IMPLEMENTATION OF RUSSIAN SATTELITE COMMUNICATION SYSTEM “GONETS” IN AIRCRAFT MONITORING


Cite item

Full Text

Abstract

One of the main problems of air transportation is the problem of continuous aircraft monitoring, which allows to control every specified flight plan, record deviations from the route, and, in case of a crash or an accident, immediately perform the aircraft search, location and rescue. This problem can be effectively solved by means of satellite navigation systems, satellite communication systems and automatic vehicle monitoring systems. The onboard aircraft satellite telemetric terminal “ Gonets D1-M ” is a good option for solving the problem, as it was specially designed for installation in vehicles to record their location, speed and direction. Additionally, it can register a number of other parameters, such as analog / digital input data and sensor readings; that allows to transfer to the control center not only the data on aircraft attitude and speed, but also on the status of its operation. At present, the policy of import substitution is widely implemented on the territory of the Russian Federation, and it has an influence on all spheres of economic activity. This paper gives a presentation of the home-produced satellite navigation system “ Gonets ” , which has a number of advantages in comparison with foreign analogues. The proposed system is being used in the field of sea transportation and has already established itself as practical; so there is a prospect of introducing such a system to the aviation sphere.

Full Text

Introduction. This article deals with the topical problem of prospects in using the home-produced satellite navigation system “Gonets” in the field of aviation [1; 2]. The actual satellite system demonstrates certain advantages compared to such foreign analogues as the satellite system “Iridium”. “Gonets”. The satellite communication system “Gonets” is designed for different modes of global informational exchange with spacecraft and missiles and also for supplying relay channels for different purposes. “Gonets” provides communication in zones which are out of coverage of the land GSM networks [3-5], provides communication environment for Russian coordinate and timing support system GLONASS and communication with stationary and mobile subscribers in regions with limited access to common means of communication. Transmission of data/message packets both between the system subscribers and with users of general communication networks can be established [6-8]. The equipment and software for spacecraft and subscriber communication terminals is designed in such a way that the system operation does not require continuous subscribers’ location within the spacecraft radio visibility. When the spacecraft and the terminal are out of the radio visibility zone they can share, the message is buffered and transmitted when one of the system’s spacecraft enters the subscriber’s zone. At present “Gonets” system can provide such services as: - message exchange between the system subscribers on a global scale; - transmission of location data for the objects processed by GLONASS system; - message exchange between the system subscribers and users of general networks on a global scale; - circular message transmission for a group of subscribers; - transmission of telemetered data for target objects. Data are transferred by the system both out of connection with the ground segment (point-to-point: subscriber - SC - subscriber) and by employing regional stations (subscriber - SC - regional station). Regional stations provide routing of messages as well as information exchange of subscribers with the Internet (fig. 1) [9-11]. When both the transmitting and the receiving terminals are in radio visibility of the same SC, the time of message transfer is 1-2 minutes. Waiting time for a communication link of a subscriber on Russian territory through the system of 12 SC is from 0 (at the northern borders) to 15 minutes (at the southern borders of Russia). M2M satellite channel. Channels of mobile satellite communication terminals “Gonets” are used in the M2M networks where there is a need of telematic data transmission from remote places that are out of land communication networks coverage. From “Gonets” satellite M2M data are transmitted to the regional “Gonets” station, and then to the Internet. The use of satellite channels of “Gonets” system in forming M2M networks provides unlimited scalability for industrial systems where the inspection equipment units are placed all over an extensive territory with no communication infrastructure. Compactness of “Gonets” terminals and antennas is also an important factor that makes it possible to install the equipment in different spatial conditions (fig. 2). The service is provided by a subscriber’s “Gonets” terminal working in the automatically mode. The terminal is joined to the user’s system controller and automatically transmits M2M data through the satellite “Gonets” network. “Gonets-D1M”. The satellite telemetric terminal “Gonets-D1M” can be used to provide data collection and transference. “Gonets-D1M” terminal is designed for installation in vehicles (fig. 3). The terminal registers location, speed and route of the vehicle. The navigation can be provided through the global navigation system GLONASS, the global positioning system GPS, or through both these systems simultaneously [12; 13]. The terminal is applicable for any kind of stationary and mobile platforms and vehicles. At present the terminal is widely used in sea transportation; potentially, it can be effectively used in air transportation. The terminal operation principles. The experimental onboard system will comprise: the satellite terminal “Gonets-D1M” with satellite and cellular communication antennas. The power required for operation can always be supplied by the aircraft electrical direct current system of 12 V. When switched on, the terminal performs the search of GLONASS and GPS satellites, fixes its own location, speed, time, input voltage, takes sensors’ readings and connects to the server. As soon as the connection is made, the terminal starts to transfer monitoring information to the server at a specified rate. In zones out of GSM network coverage the data will be transmitted through the “Iridium” network SBD channel; these can also be duplicated in case the GSM signal is received. If connection to the server becomes problematic, all information is stored in a non- volatile memory of the terminal and transferred as soon as the connection is re-established (fig. 4). The route of the vehicle is recorded in the form of separate time points at which all the terminal incoming information from the sensors and the auxiliary equipment is registered. A concrete route point is stored in memory if at least of one of the following things happen: a deviation from the given directional angle; the end of the lapse of point fixation time (for moving objects); any event at analog and discrete inputs; change of the device status. Fig. 1. Functioning of satellite communications for the monitoring of aircraft Рис. 1. Принцип работы спутниковой связи для мониторинга ВС Fig. 2. Functional diagram of the terminal operation Рис. 2. Функциональная схема работы терминала Fig. 3. Functional diagram of the transmission stages of telemetry information Рис. 3. Функциональная схема этапов передачи телеметрической информации Fig. 4. Terminal “Gonets-D1M” Рис. 4. Терминал “Гонец-Д1М” Satellite systems compared Gonets Iridium Maximum data transmission volume V = 340 byte = 2,72 K V = 340 byte = 2,72 K Average data transmission time r = 10 K/sec r = 20 K/sec Full packet transmission time T = 2.2 sec T = 3.8 sec The object’s attitude data and aircraft parameters’ records are captured and transferred as a packet through GSM or “Gonets” networks to the control center (see table) [14; 15]. Conclusion. The article gives an analysis of the advantages of “Gonets” satellite navigation system implementation in the field of aviation for the purpose of aircraft monitoring. Compactness of the terminal, authentication of subscribers when the channel is accessible, full coverage of the Russian Federation territory - all these point out the advantages of the system’s application and its ability to provide economical personal communication for all kinds of coverage zones. For effective aircraft monitoring, “Gonets-D1M” can be implemented as a means of communication, as it is already being used in sea transportation sphere. This system is able to provide continuous monitoring of aircraft throughout the territory of Russia.
×

About the authors

A. R. Akzigitov

Reshetnev Siberian State University of Science and Technology

Email: aakzigitov88@mail.ru
31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

N. I. Stacenko

Reshetnev Siberian State University of Science and Technology

31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

N. S. Pisarev

Reshetnev Siberian State University of Science and Technology

31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

A. N. Efimova

Reshetnev Siberian State University of Science and Technology

31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

R. M. Musin

Reshetnev Siberian State University of Science and Technology

31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

References

  1. Галькевич А. И. Низкоорбитальная космиче- ская система персональной спутниковой связи и пе- редачи данных. М. : Юлис, 2013. 168 с.
  2. Кузовников А. В., Тестоедов Н. А., Агуреев В. А. Проблемы развития низкоорбитальной многофунк- циональной системы персональной спутниковой свя- зи «ГОНЕЦ-Д1М» // Вестник СибГАУ. 2013. Т. 52, № 6. С. 158-163.
  3. Мониторинг воздушных судов в высоких ши- ротах посредством использования спутниковой связи «ИРИДИУМ» на основе телеметрического терминала ASC-6 / А. Р. Акзигитов [и др.] // Сибирский журнал науки и технологий. 2017. Т. 18, № 3. С. 552-557.
  4. Шевчук Д. В. Оценка времени доставки сооб- щений системой «ГОНЕЦ» при различных вариантах построения орбитальной группировки // Радиотехни- ка. 2012. № 11. С. 127-130.
  5. Мухин И. Е., Шевцов А. Н., Щитов А. Н. Пер- спективы применения многофункциональной системы персональной спутниковой связи МСПСС «ГОНЕЦ» // Инфокоммуникации и информационная безопасность: состояние, проблемы и пути решения : материалы II Всерос. науч.-практ. конф. 2015. С. 151-155.
  6. Жаров А. А. Многофункциональная система персональной спутниковой связи «ГОНЕЦ-Д1М»: состояние и перспективы развития // Технологии и средства связи. 2013. № 6 (2). С. 72-78.
  7. Акимов А., Полещук В. Пространственная дос- тупность и оперативная готовность низко- орбитальной группировки космических аппаратов связи // Технологии и средства связи. 2014. № 6 (2). С. 76-81.
  8. Антамошкин О. А. Проектирование высокона- дежных систем реального времени // Труды МАИ. 2011. № 45. С. 61-63.
  9. Маринич А. Н., Припотнюк А. В., Устинов Ю. М. Мониторинг судов на трассах северного морского пути с помощью спутниковых систем связи // Вестник государственного университета морского и речного флота им. адмирала С. О. Макарова. 2016. № 6. С. 184-205.
  10. Акимов А., Шевчук Д., Данилов Д. Опера- тивность передачи информации в низкоорбитальной системе связи с переносом сообщений на борту кос- мических аппаратов // Технологии и средства связи. 2015. № 1. С. 69-72.
  11. Акимов А., Шевчук Д., Данилов Д. Опера- тивность передачи информации в низкоорбитальной системе связи с переносом сообщений на борту кос- мических аппаратов // Технологии и средства связи. 2015. № 2. С. 72-75.
  12. Цисар Л. Лучшая спутниковая связь расши- ряет стандарты // Технологии и средства связи. 2008. № 64. С. 40-42.
  13. Бистерфельд О. А. Алгоритм транспортиров- ки данных по каналу связи с сегментом спутниковой связи // Наука и образование. 2014. № 10. С. 41-43.
  14. Картавцев Д. В., Облиенко А. В., Облиенко М. В. Организация связи с помощью станций спутниковой связи типа VSAT // Пожарная безопасность: пробле- мы и перспективы. 2014. № 5. С. 360-363.
  15. Назаров С. Н. Повышение эффективности связи подвижных абонентов посредством интеграции сотовой и спутниковой систем связи // Вестник Улья- новского государственного технического университе- та. 2010. № 52. С. 53-56.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Akzigitov A.R., Stacenko N.I., Pisarev N.S., Efimova A.N., Musin R.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies