The method of fictitious discrete models in calculations bodies with an inhomogeneous regular structure

封面

如何引用文章

详细

In calculations for the strength of elastic composite structures (plates, beams, shells), which are widely used in aviation and rocket and space technology, using the finite element method (FEM), it is important to know the error of the solution. To analyze the error of the solution, it is necessary to use a sequence of approximate solutions constructed according to the FEM using the grinding procedure for discrete basic models (BM), which take into account the inhomogeneous, micro-inhomogeneous structure of structures (bodies) within the micro-approach. Discrete models obtained by grinding BM have a high dimension, which makes it difficult for them to use FEM. In addition, there are BM of composite bodies (CB), for example, BM of bodies with a micro-inhomogeneous structure, which have such a high dimensionality that the implementation of FEM for such BM, due to the limited computer resources, is almost impossible. To solve these problems, it is proposed to use fictitious discrete models in the calculations of the CB according to the FEM.

In this paper, we propose a method of fictitious discrete models (MFDM) for calculating the strength of elastic bodies with an inhomogeneous, micro-inhomogeneous regular structure. MFDM is implemented using FEM with the use of adjusted strength conditions that take into account the error of approximate solutions. The method is based on the following statement. We believe that BM CB generates solutions that differ little from the exact ones. Due to the convergence of the FEM, such BM for CB always exist. The calculation of CB according to MFDM is reduced to the construction and calculation of the strength of fictitious discrete models (FM), the dimension of which is less than the dimension of the BM. FM reflects: the shape, characteristic dimensions, attachment, loading, and appearance of the heterogeneous structure of the CB, and the distribution of elastic modulus corresponding to the BM of the CB. The sequence consisting of the FM converges to the BM, i.e. the limiting FM coincides with the BM. The convergence of such a sequence ensures uniform convergence of the FM stresses to the corresponding BM stresses. The implementation of FEM for FM with the use of multigrid finite elements leads to a large saving of computer resources, which allows the use of MFDM for strength calculations of bodies with a micro-inhomogeneous regular structure. The calculation of the strength of CB according to MFDM requires 103÷106 less computer memory than a similar calculation using BM CB, and does not contain a procedure for grinding BM. The given example of calculating the strength of a beam with an inhomogeneous regular fiber structure according to the MFDM shows its high efficiency. The use of adjusted strength conditions allows us to use approximate solutions with a large error in the calculations of CB for strength, which leads to an increase in the efficiency of MFDM.

作者简介

Alexander Matveev

Institute of Computational Modeling

编辑信件的主要联系方式.
Email: mtv241@mail.ru

Cand. Sc., associate Professor, senior researcher

俄罗斯联邦, 50/44, Akademgorodok, Krasnoyarsk, 660036

参考

  1. Alfutov N. A., Zinov’ev A. A., Popov B. G. Raschet mnogosloynyh plastin i obolochek iz kompozicionnyh materialov [Calculation of multilayer plates and shells made of composite materials]. Moscow, Mashinostroenie Publ., 1984, 264 p.
  2. Andreev A. N., Nemirovskij Y. V. Mnogosloynye anizotropnye obolochki i plastiny. Izgib, ustojchivost’, kolebaniya [Multilayer anisotropic shells and plates. Bending, stability, vibration]. Novosibirsk, Nauka Publ., 2001, 288 p.
  3. Bate K., Vilson E. Chislennye metody analiza i metod konechnykh elementov [Numerical analysis methods and finite element method]. Moscow, Stroiizdat Publ., 1982, 448 p.
  4. Bezuhov N. I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of the theory of elasticity, plasticity and creep]. Moscow, Vysshaya shkola Publ., 1968, 512 p.
  5. Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost’ detalej mashin [Calculation of the strength of machine parts]. Moscow, Mashinostroenie Publ., 1993, 640 p.
  6. Demidov S. P. Teoriya uprugosti [Theory of elasticity]. Moscow, Vysshaya shkola Publ., 1979. 432 p.
  7. Fudzii T., Dzako M. Mekhanika razrusheniya kompozicionnyh materialov [Fracture mechanics of composite materials]. Moscow, Mir Publ., 1982, 232 p.
  8. Golovanov A. I., Tiuleneva O. I., Shigabutdinov A. F. Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii [Finite element method in statics and dynamics of thin-walled structures]. Moscow, Fizmatlit Publ., 2006, 392 p.
  9. Golushko S. K., Nemirovskij Y. V. Pryamye i obratnye zadachi mekhaniki uprugih compozitnyh plastin i obolochek vrashcheniya [Direct and inverse problems of mechanics of elastic composite plates and shells of rotation]. Moscow, Fizmatlit Publ., 2008, 432 p.
  10. Guz’ A. N., Ignatov I. V., Girchenko A. G. et al. [Mechanics of composite materials and structural elements]. Prikladnye issledovaniya. 1983, Vol. 3, 262 p.
  11. Kravchuk A. S., Majboroda V. P., Urzhumcev Y. S. Mekhanika polimernyh i kompozicionnyh materialov [Mechanics of polymer and composite materials]. Moscow, Nauka Publ., 1985, 201 p.
  12. Matveev A. D. [Calculation of elastic structures using the adjusted terms of strength]. Izvestiya AltGU. 2017, No. 4, P. 116–119 (In Russ.). doi: 10.14258/izvasu(2017)4-21.
  13. Matveev A. D. [Construction of multigrid finite elements to calculate shells, plates and beams based on generating finite elements]. PNRPU Mechanics Bulletin. 2019, No. 3, P. 48–57 (In Russ.). Doi: 10/15593/perm.mech/2019.3.05.
  14. Matveev A. D. [Method of generating finite elements]. The Bulletin of KrasGAU. 2018, No. 6, P. 141–154 (In Russ.).
  15. Matveev A. D. [Method of. multigrid finite elements to solve physical boundary value problems]. Information technologies and mathematical modeling. Krasnoyarsk, 2017. P. 27–60.
  16. Matveev A. D. [Mixed discrete models in the analysis of elastic three-dimensional inhomogeneous bodies of complex shape]. Vestnik PNIPU. Mekhanika. 2013, No. 1, P. 182–195 (In Russ.).
  17. Matveev A. D. [Multigrid finite element Method in the calculations of composite plates and beams of irregular shape]. The Bulletin of KrasGAU. 2017, No. 11, P. 131–140 (In Russ.).
  18. Matveev A. D. [Multigrid finite element Method]. The Bulletin of KrasGAU. 2018, No. 2, P. 90–103 (In Russ.).
  19. Matveev A. D. [Multigrid method for finite elements in the analysis of composite plates and beams]. Vestnik KrasGAU. 2016, No. 12, P. 93–100 (In Russ.).
  20. Matveev A. D. [Multigrid modeling of composites of irregular structure with a small filling ratio]. J. Appl. Mech. Tech. Phys. 2004, No. 3, P. 161–171 (In Russ.).
  21. Matveev A. D. [Some approaches of designing elastic multigrid finite elements]. VINITI Proceedings. 2000, № 2990-B00, P. 30 (In Russ.).
  22. Matveev A. D. [The construction of complex multigrid finite element heterogeneous and microinhomogeneities in structure]. Izvestiya AltGU. 2014. № 1/1, P. 80–83. doi: 10.14258/izvasu(2014)1.1-18.
  23. Matveev A. D. [The method of multigrid finite elements in the calculations of threedimensional homogeneous and composite bodies]. Uchen. zap. Kazan. un-ta. Seriia: Fiz.-matem. Nauki. 2016, Vol. 158, Iss. 4, P. 530–543 (In Russ.).
  24. Matveev A. D. [The method of. multigrid finite elements of the composite rotational and bicurved shell calculations]. The Bulletin of KrasGAU. 2018, No. 3, P. 126–137 (In Russ.).
  25. Matveev A. D. Multigrid finite element method in stress of three-dimensional elastic bodies of heterogeneous structure. IOP Conf, Ser.: Mater. Sci. Eng. 2016, Vol. 158, No. 1, Art. 012067, P. 1–9.
  26. Moskvichev V. V. Osnovy konstrukcionnoy prochnosti tekhnicheskih sistem i inzhenernyh sooruzheniy [Fundamentals of structural strength of technical systems and engineering structures]. Novosibirsk, Nauka Publ., 2002, 106 p.
  27. Nemirovskij Y. V., Reznikov B. S. Prochnost’ elementov konstrukciy iz kompozitnyh materiallov [Strength of structural elements made of composite materials]. Novosibirsk, Nauka Publ., 1984, 164 p.
  28. Norri D., de Friz Zh. Vvedenie v metod konechnykh elementov [Introduction to the finite element method]. Moscow, Mir Publ., 1981, 304 p.
  29. Obraztsov I. F., Savel’ev L. M., Khazanov Kh. S. Metod konechnykh elementov v za-dachakh stroitel’noi mekhaniki letatel’nykh apparatov [Finite element method in problems of aircraft structural mechanics]. Moscow, Vysshaia shkola Publ., 1985, 392 p.
  30. Pisarenko G. S., Yakovlev A. P., Matveev V. V. Spravochnik po soprotivleniyu materialov [Hand book of resistance materials']. Kiev, Nauk. Dumka Publ., 1975, 704 p.
  31. Pobedrya B. E. Mekhanika kompozicionnyh materialov [Mechanics of composite materials]. Moscow, MGU Publ., 1984, 336 p.
  32. Rabotnov Y. N. [Mechanics of a deformed solid]. Moscow, Nauka Publ., 1988, 711 p.
  33. Samul’ V. I. Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity]. Moscow, Vysshaia shkola Publ., 1982, 264 p.
  34. Sekulovich M. Metod konechnykh elementov [Finite element method]. Moscow, Stroiizdat Publ., 1993, 664 p.
  35. Timoshenko S. P., Dzh. Gud’er. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka Publ., 1979, 560 p.
  36. Vanin G. A. Mikromekhanika kompozicionnyh materialov [Micromechanics of composite materials]. Kiev, Naukova dumka Publ., 1985, 302 p.
  37. Vasil’ev V. V. Mekhanika konstrukciy iz kompozicionnyh materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroenie Publ., 1988, 269 p.
  38. Zenkevich O. Metod konechnykh elementov v tekhnike [Finite element method in engineering]. Moscow, Mir Publ., 1975, 544 p.
  39. Zienkiewicz O. C., Taylor R. L., Zhu J. Z. The finite element method: its basis and fundamentals. Oxford: Elsevier Butterworth-Heinemann, 2013, 715 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Matveev A.D., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##