Impact of the reinforcement technique on characteristics of composite tubular structures

Cover Page

Cite item

Full Text

Abstract

Different composite elements including tubular structures are used as support structures in spacecraft optical systems. The compliance with the specified dimensional stability over a wide temperature range, in particular from –269 up to 100 °C, is important for the design of tubular structures. The promising method of manufacturing tubular structures of CM – radial braiding combined with RTM molding method is discussed in this paper. In addition, the paper describes the method of determining the optimal reinforcement technique for a braided perform which allows to reduce geometrical deflections occurring during a molding process. The impact of the reinforcement technique on the dimensional stability of tubular structures is illustrated in this paper by the example of several reinforcement techniques and manufacturing methods. The paper also contains the analysis of these techniques and the determination of the optimal one to comply with the specified characteristics.

About the authors

Ekaterina A. Trifonova

JSC Academician M. F. Reshetnev “Information satellite systems”

Author for correspondence.
Email: trifonova@iss-reshetnev.ru

design engineer; JSC Academician M. F. Reshetnev “Information satellite systems”

Russian Federation, 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

Andrey V. Zhukov

JSC Academician M. F. Reshetnev “Information satellite systems”

Email: zhav@iss-reshetnev.ru

deputy chief; JSC Academician M. F. Reshetnev “Information satellite systems”

Russian Federation, 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

Vyacheslav V. Savitsky

JSC Academician M. F. Reshetnev “Information satellite systems”

Email: savs@iss-reshetnev.ru

department head; JSC Academician M. F. Reshetnev “Information satellite
systems”

Russian Federation, 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

Vladimir V. Batrakov

Kazan National Research Technical University named after A. N. Tupolev

Email: wwba@list.ru

Head of Composite Technology Laboratory; Kazan National Research Technical University named after A. N. Tupolev

Russian Federation, 10, K. Marks St., Kazan, Republic of Tatarstan, 420111

References

  1. Kardashev N. S., Novikov I. D., Lukash V. N. [Overview of scientific task for the Millimertron observatory]. Uspekhi fizicheskikh nauk. 2014, No. 12, P. 1319–1352 (In Russ.).
  2. Federal'noe kosmicheskoe agentstvo [Space observatory Millimertron] (In Russ.). Available at: http://millimetron.ru/index.php/ru/ (accessed 16.03.2020).
  3. Mikhaylin Yu. A. Spetsial'nye polimernye kompozitsionnye materialy [Special polymer materials]. St.Petersburg, Nauch. osnovy i tekhnologii Publ., 2009, 658 p.
  4. Kirillov V. N., Startsev O. V., Efimov V. A. [Climatic resistance and damageability of polymer composite materials, problems and solutions]. Aviatsionnye materialy i tekhnologii. 2012, No. S, P. 412–423 (In Russ.).
  5. Mikhaylin Yu. A. Konstruktsionnye polimernye kompozitsionnye materialy [Structural polymer composite materials]. St.Petersburg, Nauch. osnovy i tekhnologii Publ., 2008, 820 p.
  6. Maksimov G. Yu. Teoreticheskie osnovy razrabotki kosmicheskikh apparatov [Theoretical foundations of spacecraft development]. Moscow, Nauka Publ., 1980, 320 p.
  7. Smerdov A. A., Tairova L. P., Timofeev A. N. [Method of design and experimental development of dimensionally stable tubular rods made of carbon fiber]. Konstruktsii iz kompozitsionnykh materialov. 2006, No. 3, P. 12–23 (In Russ.).
  8. Mikhaylov V. V. K voprosu o mekhanike razrusheniya pri rastyazhenii elementov iz vysokoprochnykh armirovannykh plastikov s poverkhnostnymi i skvoznymi treshchinami [On the issue of tensile fracture mechanics of high-strength reinforced plastic elements with surface and through cracks]. Moscow, Nauka Publ., 1981, P. 278–281.
  9. Samipur S. A., Khaliulin V. I., Batrakov V. V. [Development of a technology for the manufacture of composite tubular elements for aerospace purposes by the method of radial braiding]. Problemy mashinostroeniya i nadezhnosti mashin. 2018, No. 3, P. 90–95 (In Russ.).
  10. Meleshko A. I., Polovnikov S. P. Uglerod, uglerodnye volokna, uglerodnye kompozity [Carbon, carbon fibers, carbon composites]. Moscow, Sayns Press Publ., 2007, 189 p.
  11. Tkachuk A. I., Grebeneva T. A., Chursova L. V., Panina N. N. [Thermoplastic binder. Present and future]. Trudy VIAM. 2013, No. 11. (In Russ.). Available at: http//www.viam-works.ru (accessed 13.03.2020).
  12. Kozhanov D. A. [Modelling tensile behavior of flexible woven composites]. Nizhniy Novgorod, NIIM NU, 2017, 117 p.
  13. Endruweit A., Ermanni P. The in-plane permeability of sheared textiles. Experimental observations and a predictive conversion model. Composites. Part A. 2004, No. 35 P. 439–451. doi: 10.1016/j.compositesa.2003.11.002.
  14. Vernet N., Ruiz E., Advani S. Experimental determination of the permeability of engineering textiles. Composites. Part A. 2014, No. 61 P. 172–184. doi: 10.1016/j.compositesa.2014.02.0101359-835X/.
  15. Robert S. Pierce, Brian G. Falzon, Mark C. Thompson Permeability Characterization of Sheared Carbon Fiber Textile Preform POLYMER COMPOSITES, 2018, P. 2287–2298.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Trifonova E.A., Zhukov A.V., Savitsky V.V., Batrakov V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies