Vol 21, No 4 (2020)

Section 1. Computer Science, Computer Engineering and Management

Algorithmic and software of the system profiling the actions of users of the information system

Anashkin Y.V., Zhukova M.N.

Abstract

The paper describes the software of the system for profiling the actions of users of the information system. This profiling system is aimed at solving the problem of trust in users of information systems. The system should regulate access to protected resources by analyzing user behavior. The algorithmic component of the system is represented by a user behavior model and a general system operation algorithm. The user behavior model is based on the apparatus of Markov chains Software implementation allows in practice to obtain the foundations of the proposed approach to work. At the development stages, the choice of software architecture is carried out. The client-server architecture was chosen as a reasonable decision. The software component of the user activity profiling system consists of five separate software modules. At the end of development, a brief testing of the components is carried out. The novelty of this work lies in the proposal of an approach that uses the profiling of user actions as an additional determining factor in managing access to objects, as a way to strengthen the basic measures “Controlling access of subjects to access objects” in the order system of FSTEC of Russia.

Siberian Aerospace Journal. 2020;21(4):466-477
pages 466-477 views

Structure, network protocols of the internet of things for quality production control

Vishniakou V.A., Shaya B.H., Al-Masri A.H., Al-Hajj S.H.

Abstract

The subject of research is the model and structure of the Internet of things (IoT) network for product quality control in industry and agriculture. The purpose of the article is to analyze communication protocols and structures of IoT networks. The method of analysis and structural design of IoT networks is applied. The field of application is automation of monitoring products of enterprises of the aerospace industry. The article provides an overview and analysis of existing IoT technology; it considers the protocols and composition of IoT networks, and provides variations in the structures of building such networks. 4 levels of IoT architecture are described, as well as the communication protocols are used. The directions of building the Internet of things network for product quality control are defined. A multi-agent model of such system is presented, for the implementation of which the structure of the IoT network is given.

The structure of a multi-agent system (MAS) for monitoring product quality in industry and agriculture includes many agents, such as product quality agents, communication agents, database agents, agents for analyzing information received from sensor agents, and decision-making agents. This MAS implements functions to ensure the required class of product quality and it is based on building a local network of the Internet of things. The research proposes an algorithm for processing information in such an IoT network. Analyzers (sensors) product qualities will be periodically polled and their values will be recorded in the server database. The decision-making subsystem sends data on product quality compliance to the enterprise administrator on a mobile device. The server structure is implemented using cloud IoT platforms, for which a brief overview is provided. The one IoT network implementation is developed using LTE NB-IoT technology. This approach can be used in the aerospace industry for product quality control within automation 4.0.

Siberian Aerospace Journal. 2020;21(4):478-482
pages 478-482 views

Method of equivalent strength conditions in calculations of bodies with inhomogeneos regular structure

Matveev A.D.

Abstract

Plates, beams and shells with a non-uniform and micro-uniform regular structure are widely used in aviation and rocket and space technology. In calculating the strength of elastic composite structures using the finite element method (FEM) it is important to know the error of the approximate solution for finding where you need to build a sequence of approximate solutions that is connected with the procedure of crushing discrete models. Implementation of the procedure for grinding (within the micro-pass) discrete models of composite structures (bodies) requires large computer resources, especially for discrete models with a microinhomogeneous structure. In this paper, we propose a method of equivalent strength conditions (MESC) for calculating elastic bodies static strength with inhomogeneous and microinhomogeneous regular structures, which is implemented via FEM using multigrid finite elements. The calculation of composite bodies’ strength according to MESC is limited to the calculation of elastic isotropic homogeneous bodies strength using equivalent strength conditions, which are determined based on the strength conditions set for composite bodies. The MESC is based on the following statement. For all composite bodies V0, which are such a homogeneous isotropic body Vb and the number of p, if the safety factor nb of the body Vb satisfies the equivalent conditions of strength pn1(1+δα)nb(1δα2)pn2(1δα), the safety factor n0 of the body V0 meets the defined criteria for strength n1n0n2, where n1, n2 specified, the safety factor n0nb complies with the accurate (approximate) solution of elasticity theory problem is built for body V0 (body Vb); δα<(n2n1)/(n2+n1); δα is the upper δb error estimation of the maximum equivalent body stress Vb, corresponding to approximate solution. When constructing equivalent strength conditions, i. e when finding the equivalence p coefficient, a system of discrete models is used, dimensions of which are smaller than the dimensions of the basic composite bodies models. The implementation of MESC requires small computer resources and does not use procedures for grinding composite discrete models. Strength calculations for bodies with a microinhomogeneous structure using MESC show its high efficiency. The main procedures for implementing the MESC are briefly described.

Siberian Aerospace Journal. 2020;21(4):483-491
pages 483-491 views

Models and methods of optimal control of software and technical configuration of heterogeneous distributed information processing systems

Ontuzheva G.A.

Abstract

The article discusses formalization of the problem of heterogeneous distributed information processing systems (HDIPS) software and hardware configuration management. A formal description of possible optimality criteria for the HDIPS software and hardware configuration is given. The HDIPS model in terms of queuing theory is proposed. The problem of allocating the HDIPS computational resources is formulated as a transport problem according to time criterion with atomic needs. The algorithm for solving this problem is proposed and the boundaries of its applicability to the HDIPS are determined. To meet the selected optimality criterion, the analysis of the HDIPS software and hardware configuration applying its formal model, using the queuing theory methods is presented. HDIPS is presented as a queuing network, where each computing node and route control unit is a mass service system. The problem of computing resource allocation in HDIPS is presented as a transport problem according to the time criterion with atomic needs. The least time algorithm for indivisible needs takes into account the indivisibility condition.

Siberian Aerospace Journal. 2020;21(4):492-498
pages 492-498 views

Compound bending of an orthotropic plate

Sabirov R.A.

Abstract

The problem of longitudinal-transverse deformation and strength of an orthotropic plate on the action of a local transverse force and stretching along the contour of the membrane forces is studied. The direction of laying the fiber of a unidirectional composite that provides the lowest level of stress and deflection is determined.

In the zone of application of concentrated force in thin-walled structures, significant bending moments and shear forces occur, which are a source of stress concentration. To reduce stresses, the method of plate tension by membrane forces applied along the contour is chosen. The maximum possible order of membrane tension forces is selected, which provides conditions for the strength and rigidity of the solar panel plate structure, which has a hinge-fixed support along the contour. Pre-tensioning the plate web allows to reduce the stress by 50 times.

The problem of compound bending of isotropic and anisotropic plates when applying transverse and selection of longitudinal loads, with restrictions on strength and stiffness, can be called a problem of rational design of the structure. The resulting equations and calculation program can be used in the design of plate structures, as well as in the educational process.

Siberian Aerospace Journal. 2020;21(4):499-513
pages 499-513 views

On remote sensing of the earth by spacecraft

Shlepkin A.A., Shiryaeva T.A., Shlepkin A.K., Filippov K.A., Pashkovskaya O.V.

Abstract

Remote sensing is a process which implies collecting information about an object. Due to their properties, satellite images are widely used in both practical and scientific fields.

Satellite imagery is used in research aimed at the comprehensive study of natural resources, the dynamics of natural phenomena, and in the tasks of environmental protection. Special attention is paid to the use of space information for daily operational monitoring of the state of the environment in the implementation of geo-ecological monitoring of regions. In particular, this poses the problem to find the regions of the earth's surface with the characteristics determined by the considered parameters using the values of established parameters at certain points of the earth's surface. In this paper, we consider the special case of this problem when the given four points of the earth's surface determine the regions of the earth's surface (the so-called kernels of generalized squares) that have a specified configuration (square).

Siberian Aerospace Journal. 2020;21(4):514-522
pages 514-522 views

Section 2. Aviation and Space Technology

Influence of plasma jets of electric jet engines on spacecraft functional characteristics

Nadiradze A.B., Tikhomirov R.E., Maximov I.A., Kochura S.G., Balashow S.V.

Abstract

The issues of compatibility of correcting electric jet engines (EJE) and large-size transformable antennas (LTA) used in high-orbit communication satellites are considered. The paper deals with the erosive and polluting effect of EJE jets interacting with knitted mesh material (grid mesh), which is used for manufacturing LTA reflectors. The erosive effect of the EJE jets on the LTA mesh is characterized by the fact that the angles of ions incidence on the surface of the threads in the mesh are in the range from 0 to 90°, i. e. such effect takes place at practically any angle of ions incidence on the mesh surface. The research includes both mathematical description of physical processes and conducting a wide series of experiments, which makes it possible to achieve the necessary reliability of the results. It has been established that the effect of plasma jets of correcting engines can lead to significant sputtering of the reflecting coating from the surface of a large-size antenna reflector. The authors obtained experimental data on the degradation of the reflection coefficient of electromagnetic radiation from the mesh, depending on the degree of plasma jet influence.

It was found that the sputtering of reflecting coating from the surface of threads does not significantly affect the reflection coefficient. The sputtering of the coating at the points of threads contact is much more significant. Strong dependence of the reflection coefficient on the type of mesh weaving was also found. The mechanism of sputtering products deposition on reflecting coatings of the thermal control system radiators was investigated. The results of calculations of the sputtering coefficient and the sputtering indicatrix of the reflecting coating applied to the mesh threads were obtained. The degradation of the functional characteristics of thermoregulatory coatings (TRC) during the deposition of thin films of gold, which is one of the possible materials for a reflecting coating, was experimentally determined. Estimates of the maximum permissible level of TRC contamination were obtained. It is shown that, subject to the relevant design rules, it is possible to use EJE and LTA together in high-orbit communication satellites.

Siberian Aerospace Journal. 2020;21(4):524-533
pages 524-533 views

Impact of the reinforcement technique on characteristics of composite tubular structures

Trifonova E.A., Zhukov A.V., Savitsky V.V., Batrakov V.V.

Abstract

Different composite elements including tubular structures are used as support structures in spacecraft optical systems. The compliance with the specified dimensional stability over a wide temperature range, in particular from –269 up to 100 °C, is important for the design of tubular structures. The promising method of manufacturing tubular structures of CM – radial braiding combined with RTM molding method is discussed in this paper. In addition, the paper describes the method of determining the optimal reinforcement technique for a braided perform which allows to reduce geometrical deflections occurring during a molding process. The impact of the reinforcement technique on the dimensional stability of tubular structures is illustrated in this paper by the example of several reinforcement techniques and manufacturing methods. The paper also contains the analysis of these techniques and the determination of the optimal one to comply with the specified characteristics.

Siberian Aerospace Journal. 2020;21(4):535-547
pages 535-547 views

Section 3. Technological Processes and Materials

Laboratory separator of bulk materials

Danilenko E.G., Telegin S.V.

Abstract

New materials for spacecraft radiation screens engineering require a fine classification of powder materials by particle size. The article concerns the construction of powder materials laboratory separator. This type of material separation is related to gravity methods. The Moseley laboratory separator serves as the prototype of the construction with table longitudinal shaking and diametrical vibrations by means of buffers during the separation process. The unbalanced oscillator yields deck separation surface harmonic vibrations in all directions. The unbalanced oscillator DC motor voltage control gradually alters the vibration frequency and supports finer separation of the material. A power pipe enables to conduct perpetual separation process. In prototype, in contrast, up to 100 g weight is processed for up to 5 minutes. To improve the materials fine and small classes separation efficiency, riffles are made on the separation surface, which determine the places of concentration of material particles. As a result of the conducted researches for elimination of the secondary circulation flows, a system of diametrical reefing is worked out: the riffle is approximately equal to the maximum particle size of the separated material and is equal to 0.2 mm in this construction; the distance between riffles is equal to 50 mm, the tilt angle is 80 degrees relative to the deck longitudinal side. The particle motion depends on the inclination angle of the separation surface. Large particles move upwards at angles of up to 5 degrees, and downwards at angles higher than 5 degrees. Vibration frequency and amplitude alteration, as well as adjusting the inclination angle of separation surface enables to move and adjust the speed of different properties and sizes of test material. The laboratory separator work is based on the physical effects, which enable to vary the location of the power pipe. This fact allows the construction to be adapted to a variety of specific conditions and expands the construction sphere. The separator construction is simple for production and operation, and can be quickly reconfigured if necessary. The separator portability allows it to be transported.

Siberian Aerospace Journal. 2020;21(4):550-555
pages 550-555 views

Study of structural properties of bismuth pyrostannate by Raman and IR spectroscopy

Udod L.V., Romanova O.B., Aplesnin S.S., Kretinin V.V.

Abstract

Chromium-substituted bismuth pyrostannates with a pyrochlore structure were synthesized by the solid-phase reaction method. The X-ray structural analysis performed at room temperature showed that the samples Bi2(Sn1-xCrx)2O7, x = 0; 0.05, 0.1 are single-phase and belong to the Pc monoclinic structure. Polymorphic transformations of the synthesized samples were studied by Raman and IR spectroscopy. IR spectra were obtained at the temperature range 110–525 K and frequencies 350–1100 cm–1. Raman spectra were measured at room temperature at frequencies of 100–3000 cm–1. Heterovalent substitution of Sn4+ for Cr3+ modifies the spectra of pure Bi2Sn2O7. The crystal structure of Bi2Sn2O7 consists of two oxygen sublattices: SnO6 and Bi2O'. Chromium ions substituted tin ions in the SnO6 oxygen octahedra, distorting the local structure in the vicinity of bismuth ions. Phonon modes are softening in the vicinity of phase transitions. А shift of the phase boundaries of polymorphic transitions is observed for Bi2(Sn1-хCrх)2O7, x = 0.05, 0.1. The frequencies of stretching vibration modes were determined from IR and Raman spectra. The substitution of chromium for tin ions resulted in the appearance of two new modes at frequencies of 581 and 822 cm–1 in the Raman spectra. The absence of an inversion center in the crystal structure of Bi2(Sn1-xCrx)2O7 is confirmed by Raman spectroscopy. IR spectra of chromium-substituted samples consist of complex lines, which decompose into 2 and 3 Lorentzian lines. The softening and broadening of optical absorption modes are associated with the electronic contribution. Impurity states of electrons form polarons.

Siberian Aerospace Journal. 2020;21(4):556-564
pages 556-564 views

Development of sem method for analysis of organ-containing objects using inverse opals

Shabanova O.V., Nemtsev I.V., Shabanov A.V.

Abstract

The purpose of this study is to test the possibility of using inorganic macroporous structures of inverse opal in sample preparation for scanning electron microscopy of biological objects.

As an absorbent substrate we used silica inverse opals prepared by a sol-gel method to study the biological objects. The process of manufacturing the inverse opal involves a complex multi-stage technological process. First, we synthesized submicron spherical particles from polymethylmethacrylate by the method of emulsifier-free emulsion polymerization of methylmethacrylate in an aqueous medium in the presence of a diazoinitiator. This method can be used to obtain an ensemble of particles with high monodispersity, the average size of which can vary in the range from 100 to 500 nm. Then, by self-assembly technique, we deposited the beads of polymethylmethacrylate into ordered matrices (templates), mainly with a face-centered cubic lattice. The resulting mesoporous structures, called artificial opals or colloidal crystals, had lateral dimensions of about 10 × 10 × 2 mm. Then we heat-treated the opals to 120 °C to harden the template before being impregnated with the precursor. Further, we impregnated the opals  with silica sol with a particle size distribution from 1 to 5 nm, obtained by hydrolysis of tetraethoxysilane in the presence of hydrochloric acid, and then, after curing and drying the impregnating composition in air at room temperature, we multi-stage fired them up to 550 °C at normal pressure in the air atmosphere to remove all organic components. As a result, the macroporous metamaterial (the so-called inverse opals) with an open system of pores up to 400 nm in size, occupying about 80 % of the volume, were obtained.

We studied lactic acid bacteria of cucumber brine and human red blood cells with TM4000 Plus, SU3500 and S-5500 scanning electron microscopes. Auxiliary substance for the sample preparation was ionic liquid VetexQ EM (Interlab LLC). We showed that it is possible to use the inverse opal as an absorbent substrate for sample preparation and rapid analysis in scanning electron microscopy without pre-drying, chemical treatment, or temperature exposure. To improve imaging in the electron microscope, we used sputter coater to cover the inverse opal surface with a thin film of platinum. The use of ionic liquid in combination with the absorbent porous medium allows preserving an original shape of the biological structures. Using the human red blood cells and lactic acid bacteria, we showed that it is possible to carry out of the morphological analysis of the cells using various scanning electron microscopes. We found that on the basis of the inverse opal, there is a fundamental possibility of creating the absorbent substrate suitable for repeated use in the study of the biological objects. At the same time, trace remnants of previous samples remaining after annealing the plate do not introduce significant distortions when conducting new series of observations. In this study, we obtained high-quality electronic micrographs of the biological objects with high resolution and contrast. At the same time, due to the use of the inverse opals as the absorbent substrate, time and financial costs for research are reduced.

Siberian Aerospace Journal. 2020;21(4):565-573
pages 565-573 views

Production of finly despersed powder from graphite by electrolysis

Shestakov I.Y., Kupryashov A.V., Utenkov V.D., Remizov I.A.

Abstract

Multifunctional coating is a multi-layer structure applied to the surface of an aircraft to protect it from external influences. The main tasks of the multifunctional coating are: restoration of properties, overall dimensions, mass of the surface of the product, which were violated under operating conditions; changing the initial physical, mechanical and chemical properties of the product surface to ensure the specified operating conditions. Today multifunctional coatings based on micro glass spheres with applied tungsten are widely used in aerospace engineering. However, this coating has a number of disadvantages: the coating layers heterogeneity; the composition contains a harmful and dangerous component – a fluorone dye. In this article it is suggested to replace the main component of a multifunctional coating with finely dispersed graphite powder obtained by electrolysis. For this purpose, the equipment based on the principle of a diaphragm electrolyzer was constructed. The main elements of the device are a stainless steel cathode and a graphite anode immersed in an aqueous solution. As a result of anodic processes, a finely dispersed graphite powder was obtained. The average particle size of the resulting graphite particles is 4 microns. This finely dispersed graphite powder can be used as the main component of a multifunctional coating in aircraft, since it has an even homogeneous structure, as well as higher values of the main mechanical properties of a multifunctional coating.

Siberian Aerospace Journal. 2020;21(4):574-580
pages 574-580 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies