Study of structural properties of bismuth pyrostannate by Raman and IR spectroscopy

Cover Page

Cite item

Full Text

Abstract

Chromium-substituted bismuth pyrostannates with a pyrochlore structure were synthesized by the solid-phase reaction method. The X-ray structural analysis performed at room temperature showed that the samples Bi2(Sn1-xCrx)2O7, x = 0; 0.05, 0.1 are single-phase and belong to the Pc monoclinic structure. Polymorphic transformations of the synthesized samples were studied by Raman and IR spectroscopy. IR spectra were obtained at the temperature range 110–525 K and frequencies 350–1100 cm–1. Raman spectra were measured at room temperature at frequencies of 100–3000 cm–1. Heterovalent substitution of Sn4+ for Cr3+ modifies the spectra of pure Bi2Sn2O7. The crystal structure of Bi2Sn2O7 consists of two oxygen sublattices: SnO6 and Bi2O'. Chromium ions substituted tin ions in the SnO6 oxygen octahedra, distorting the local structure in the vicinity of bismuth ions. Phonon modes are softening in the vicinity of phase transitions. А shift of the phase boundaries of polymorphic transitions is observed for Bi2(Sn1-хCrх)2O7, x = 0.05, 0.1. The frequencies of stretching vibration modes were determined from IR and Raman spectra. The substitution of chromium for tin ions resulted in the appearance of two new modes at frequencies of 581 and 822 cm–1 in the Raman spectra. The absence of an inversion center in the crystal structure of Bi2(Sn1-xCrx)2O7 is confirmed by Raman spectroscopy. IR spectra of chromium-substituted samples consist of complex lines, which decompose into 2 and 3 Lorentzian lines. The softening and broadening of optical absorption modes are associated with the electronic contribution. Impurity states of electrons form polarons.

About the authors

Lubov V. Udod

Reshetnev Siberian State University of Science and Technology; Kirensky Institute of Physics, FRC KSC Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: luba@iph.krasn.ru

Cand. Sc., Associate Professor; Reshetnev Siberian State University of Science and Technology; Kirensky Institute of Physics, FRC KSC Siberian Branch of the Russian Academy of Sciences

Russian Federation, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037; 50, Akademgorodok, Krasnoyarsk, 660036

Oksana B. Romanova

Kirensky Institute of Physics, FRC KSC Siberian Branch of the Russian Academy of Sciences

Email: rob@iph.krasn.ru

Cand. Sc., Researcher; Kirensky Institute of Physics, FRC KSC Siberian Branch of the Russian Academy of Sciences

Russian Federation, 50, Akademgorodok, Krasnoyarsk, 660036

Sergey S. Aplesnin

Reshetnev Siberian State University of Science and Technology; Kirensky Institute of Physics, FRC KSC Siberian Branch of the Russian Academy of Sciences

Email: aplesnin@sibsau.ru

Dr. Sc., Professor, Head of the Department of Physics; Reshetnev Siberian State University of Science and Technology; Kirensky Institute of Physics, FRC KSC Siberian Branch of the Russian Academy of Sciences

Russian Federation, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037; 50, Akademgorodok, Krasnoyarsk, 660036

Vasily V. Kretinin

Reshetnev Siberian State University of Science and Technology

Email: kretinin.vasya@yandex.ru

student of the Department of Physics; Reshetnev Siberian State University of Science and Technology

Russian Federation, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

References

  1. Udod L. V., Aplesnin S. S., Sitnikov M. N., Molokeev M. S. Dielectric and Electrical Properties of Polymorphic Bismuth Pyrostannate Bi2Sn2O7. Physics of the Solid State. 2014, Vol. 56, P. 1315–1319.
  2. Udod L. V., Aplesnin S. S., Sitnikov M. N., Romanova O. B., Molokeev M. N. Phase transitions in bismuth pyrostannate upon substitution of tin by iron ions. J. Alloys and Compounds. 2019, Vol. 804, P. 281–287.
  3. Lewis J. W., Payne J. L., Evans I. R., Stokes H. T., Branton J. Campbell and John S. O. Evans. An Exhaustive Symmetry Approach to Structure Determination: Phase Transitions in Bi2Sn2O7. J. Am. Chem. Soc. 2016, Vol. 138, P. 8031−8042.
  4. Udod L. V., Sitnikov M. N., Aplesnin S. S., Molokeev M. S. Electrical and Dielectrical Propeties of Gas-Sensor Resistive Type Bi2Sn2O7. Solid State Phenomena. 2014, Vol. 215, P. 503–506.
  5. Aplesnin S. S., Udod L. V., Sitnikov M. N. Electronic transition, ferroelectric and thermoelectric properties of bismuth pyrostannate Bi2(Sn0.85Cr0.15)2O7. Ceramics International. 2018, Vol. 44, P. 1614–1620.
  6. Aplesnin S. S., Udod L. V., Sitnikov M. N., Kretinin V. V., Molokeev M. S., Mironova-Ulmane N. Dipole glass in chromium-substituted bismuth pyrostannate. Mater. Res. Express. 2018, Vol. 5, P. 115202.
  7. Aplesnin S. S., Udod L. V., Sitnikov M. N., Molokeev, M. S., Tarasova L. S., Yanushkevich K. I. Magnetic, Dielectric, and Transport Properties of Bismuth Pyrostannate Bi2(Sn0.9Mn0.1)2O7. Physics of the Solid State. 2017, Vol. 59, P. 2268–2273.
  8. Aplesnin S. S,, Udod L. V., Loginov Y. Y., Kretinin V. V., Masyugin A. N. Influence of cation substitution on dielectric and electric properties of bismuth stannates Bi2Sn1.9Me0.1O7 (Me=Cr, Mn). IOP Conf. Series: Materials Science and Engineering. 2019, Vol. 467, P. 012014.
  9. Udod L. V., Aplesnin S. S., Sitnikov M. N. Magnetic Properties of Bismuth Pyrostannate Doped with 3D Ions. Inorganic Materials: Applied Research. 2020, Vol. 11, P. 809–814.
  10. Udod L. V., Aplesnin S. S., Sitnikov M. N., Eremin E. V., Molokeev M. S. Effect of Mn Doping on Magnetic and Dielectric Properties of Bi2Sn2O7. Sol. St. Phenomena. 2015, Vol. 233–234, P. 105.
  11. Aplesnin S. S., Udod L. V., Sitnikov M. N., Eremin E. V., Molokeev M. S., Tarasova L. S., Yanushkevich K. I., Galyas A. I., Correlation of the Magnetic and Transport Properties with Polymorphic Transitions in Bismuth Pyrostannate Bi2(Sn1–xCrx)2O7. Phys. Sol. St. 2015, Vol. 57, P. 1627–1632.
  12. Aplesnin S. S., Udod L. V., Sitnikov M. N., Shestakov N. P. Bi2(Sn0.95Cr0.05)2O7: Structure, IR spectra, and dielectric properties. Ceramics International. 2016, Vol. 42, P. 5177–5183.
  13. Aplesnin S. S., Udod L. V., Sitnikov M. N., Romanova O. B. Dielectric and transport properties, electric polarization at the sequential structural phase transitions in iron-substituted bismuth pyrostannate. Ceramics International. 2020. Available at: https://doi.org/10.1016 /j.ceramint.2020.08.287 (accessed 25.10.2020).
  14. Udod L. V., Aplesnin S. S., Sitnikov M. N., Romanova O. B., Bayukov O. A., Vorotinov A. M., Velikanov D. A., Patrin G. S. Magnetodielectric effect and spin state of iron ions in substituted bismuth pyrostannate. European Physical Journal Plus. 2020. doi: 10.1140/epjp/s13360-020-00781-2.
  15. Evans I. R., Howard J. A. K., Evans J. S. O. α-Bi2Sn2O7 – a 176 atom crystal structure from powder diffraction data. J. Mater. Chem. 2003, Vol. 13, P. 2098–2103.
  16. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A. 1976, Vol. 32 (5), P. 751–767.
  17. Chen M., Tanner D. B., Nino J.C. Infrared study of the phonon modes in bismuth pyrochlores. Phys. Rev. B. 2005, Vol. 72, P. 054303-8.
  18. Moens L., Ruiz P., Delmon B., Devillers M. Cooperation effects towards partial oxidation of isobutene in multiphasic catalysts based on bismuth pyrostannate. Appl. Catal. A: Gen. 1998, Vol, 171, P. 131.
  19. Silva R. X., Paschoal C. W. A., Almeida R. M., M. Carvalho Castro Jr., Ayalac A. P., Auletta J. T., Lufaso M. W. Temperature-dependent Raman spectra of Bi2Sn2O7 ceramics. Vibrational Spectroscopy. 2013, Vol. 64, P. 172–177.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Udod L.V., Romanova O.B., Aplesnin S.S., Kretinin V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies