Calibration of a spacecraft magnetometer taking into account the nature of the temperature dependence of the sensitivity matrix and the offset vector

封面

如何引用文章

详细

In this paper, an analytical method is proposed for solving the problem of magnetometer calibration for a model that takes into account the vector of temperature dependence of zero offsets for each of the measuring axes of the magnetometer unit and the matrix of linear temperature dependence of each of the members of the sensitivity matrix, scaling the signal based on the actual sensitivity of each axis and including linear off-axis effects. When solving the problem of determining the calibration parameters of the magnetometer unit, it is taken into account that for measurements with any spatial orientation of the magnetometer unit, the magnitude of the measured magnetic field strength vector is preserved and is a known model value. A penalty function of 24 variables equal to the sum of the squares of the residuals is introduced into consideration. The algorithm for solving the problem of calibrating the measuring axes of the magnetometer unit is reduced to searching by the method of least squares for such values of the variables of this function that, with a given set of vectors of magnetometer measurements, provide it with a minimum. For this purpose, the specified function is examined for an extremum. Based on the necessary condition for the extremum of the penalty function, a system of 24 equations in the 24 variables is formed, which, for convenience, is divided into three systems (each of them is a system of 8 linear algebraic equations in the 8 variables). It is proved that the main matrix of each of these three systems is an invertible, from which it follows that each of them has a solution, and only one. The components of the solutions of these systems (the coordinates of the stationary point of the penalty function) are found using Cramer's rule. It is proved that the second differential of the penalty function at the found stationary point is positive, from which it follows that this point really provides the minimum of the specified function.

全文:

Introduction

Magnetometers are part of the orientation and stabilization system (OSS) of low-orbit small-sized spacecraft (LSS), where they are the main sources of information about the position of the LSS after separation from the booster block. Magnetometers measure the magnitude and direction of the magnetic induction vector of the Earth magnetic field. The obtained data are necessary to generate the control moments of LSS, while the duration of the calming mode largely depends on the accuracy of the instrument readings and the noise component.

Modern LSS OSS magnetometers are developed on the basis of the magnetoresistance effect and, due to the physical characteristics of the sensitive element, require mathematical calibration of the device. Currently, various methodologies for calibrating magnetometers have been proposed [1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 16], in particular, article [11], which provides an overview of various methodologies to perform such operations.

Previously, the problem of calibrating a spacecraft magnetometer was solved using numerical methods. This paper proposes an analytical method to solve this problem for a model that takes into account the vector of temperature dependence of zero offsets for each of the measuring axes of the magnetometer block and the matrix of linear temperature dependence of each of the members of the sensitivity matrix, scaling the signal based on the actual sensitivity of each axis and including linear off-axis effects.

1. Error model in magnetic induction vector measurements

We could denote by h = (h1, h2, h3)T the value of the measured magnetic induction vector at a certain spatial position of the magnetometer unit (MU). We use the measurement model considered in [1]:

B = (S + τ KS) h + b + τ kb, (1)

(1) uses the following notations:

B = (B1, B2, B3)T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  true magnetic induction vector;

b = (b1, b2, b3)T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  constant vector corresponding to the zero offsets for each of the MU measuring axes;

kb = (θ1, θ2, θ3)T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  vector of temperature dependence of zero offsets for each of the MU measuring axes;

S= s ij i,j=1 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 da9maabmaabaGaam4CamaaBaaaleaacaWGPbGaaGzaVlaadQgaaeqa aaGccaGLOaGaayzkaaWaa0baaSqaaiaadMgacaGGSaGaamOAaiabg2 da9iaaigdaaeaacaaIZaaaaaaa@434D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  a sensitivity matrix that scales the signal based on the actual sensitivity of each axis and includes linear off-axis effects;

K S = t ij i,j=1 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGtbaabeaakiabg2da9maabmaabaGaamiDamaaBaaaleaa caWGPbGaaGzaVlaadQgaaeqaaaGccaGLOaGaayzkaaWaa0baaSqaai aadMgacaGGSaGaamOAaiabg2da9iaaigdaaeaacaaIZaaaaaaa@4454@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  matrix of linear temperature dependence of each member of the sensitivity matrix;

τ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  temperature transmitted by the sensor (scalar value).

In this case, the components of the vectors B, h, b and kb are expressed in the same units of measurement.

The task of calibrating the measuring axes of the MU is reduced to finding the elements of the matrices S and KS, as well as the components of the vectors b and kb.

2. Development of an algorithm to determine the calibration parameters of the MU

When solving the problem of determining the calibration parameters of the MU, we will use the fact that for measurements with any spatial orientation of the MU, the value of the measured magnetic induction vector B is preserved and is a known model value.

Let the results of magnetometer measurements at discrete moments in time be a set of vectors h(l) = (h1(l), h2(l), h3(l))T, and as a result of measurements at the same discrete moments of time of the sensor transmitting temperature, a set of values τ(l), l = 1, 2,…, N was obtained. Without loss of generality, we can assume that if τ l , h 1 l , h 2 l , h 3 l , τ l h 1 l , τ l h 2 l , τ l h 3 l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHepaDdaahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaa kiaacYcacaWGObWaa0baaSqaaiaaigdaaeaadaqadaqaaiaadYgaai aawIcacaGLPaaaaaGccaGGSaGaamiAamaaDaaaleaacaaIYaaabaWa aeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaaiilaiaadIgadaqhaa WcbaGaaG4maaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaa cYcacqaHepaDdaahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawM caaaaakiaadIgadaqhaaWcbaGaaGymaaqaamaabmaabaGaamiBaaGa ayjkaiaawMcaaaaakiaacYcacqaHepaDdaahaaWcbeqaamaabmaaba GaamiBaaGaayjkaiaawMcaaaaakiaadIgadaqhaaWcbaGaaGOmaaqa amaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaacYcacqaHepaDda ahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaadIga daqhaaWcbaGaaG4maaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaa aaaOGaayjkaiaawMcaaaaa@67B6@  (l = 1, 2,…, N) is considered as point coordinates of 7-dimensional affine space, these points do not lie in the same hyperplane. We could designate these points as follows:

U l τ l , h 1 l , h 2 l , h 3 l , τ l h 1 l , τ l h 2 l , τ l h 3 l , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGSbaabeaakmaabmaabaGaeqiXdq3aaWbaaSqabeaadaqa daqaaiaadYgaaiaawIcacaGLPaaaaaGccaGGSaGaamiAamaaDaaale aacaaIXaaabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaaiil aiaadIgadaqhaaWcbaGaaGOmaaqaamaabmaabaGaamiBaaGaayjkai aawMcaaaaakiaacYcacaWGObWaa0baaSqaaiaaiodaaeaadaqadaqa aiaadYgaaiaawIcacaGLPaaaaaGccaGGSaGaeqiXdq3aaWbaaSqabe aadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaWGObWaa0baaSqa aiaaigdaaeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaGGSa GaeqiXdq3aaWbaaSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaa aaGccaWGObWaa0baaSqaaiaaikdaaeaadaqadaqaaiaadYgaaiaawI cacaGLPaaaaaGccaGGSaGaeqiXdq3aaWbaaSqabeaadaqadaqaaiaa dYgaaiaawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaaiodaaeaada qadaqaaiaadYgaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaacaGG Saaaaa@6A67@  l = 1, 2, …, N. (2)

We prove an auxiliary statement.

Lemma 1. If points

V 1 x 1 1 , x 2 1 ,, x n 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiEamaaDaaaleaacaaIXaaa baWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaiaadIhada qhaaWcbaGaaGOmaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaa kiaacYcacqWIMaYscaGGSaGaamiEamaaDaaaleaacaWGUbaabaWaae WaaeaacaaIXaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaiil aaaa@4A22@   V 2 x 1 2 , x 2 2 ,, x n 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiEamaaDaaaleaacaaIXaaa baWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaOGaaiilaiaadIhada qhaaWcbaGaaGOmaaqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaaaa kiaacYcacqWIMaYscaGGSaGaamiEamaaDaaaleaacaWGUbaabaWaae WaaeaacaaIYaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaiil aaaa@4A26@  …, V N x 1 N , x 2 N ,, x n N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGobaabeaakmaabmaabaGaamiEamaaDaaaleaacaaIXaaa baWaaeWaaeaacaWGobaacaGLOaGaayzkaaaaaOGaaiilaiaadIhada qhaaWcbaGaaGOmaaqaamaabmaabaGaamOtaaGaayjkaiaawMcaaaaa kiaacYcacqWIMaYscaGGSaGaamiEamaaDaaaleaacaWGUbaabaWaae WaaeaacaWGobaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaaaaa@49D2@       (3)

n-dimensional affine space do not lie in the same hyperplane (Nn), then among them there will be n affinely independent points.

Proof. We will prove the lemma by contradiction. We could assume that any n points from the set (3) are affinely dependent. Let m denote the maximum number of affinely independent points (3), 1 ≤ m < n. Let V i 1 x 1 i 1 , x 2 i 1 ,, x n i 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakmaabmaabaGa amiEamaaDaaaleaacaaIXaaabaWaaeWaaeaacaWGPbWaaSbaaWqaai aaigdaaeqaaaWccaGLOaGaayzkaaaaaOGaaiilaiaadIhadaqhaaWc baGaaGOmaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaS GaayjkaiaawMcaaaaakiaacYcacqWIMaYscaGGSaGaamiEamaaDaaa leaacaWGUbaabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaigdaaeqaaa WccaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaiilaaaa@4EBA@   V i 2 x 1 i 2 , x 2 i 2 ,, x n i 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakmaabmaabaGa amiEamaaDaaaleaacaaIXaaabaWaaeWaaeaacaWGPbWaaSbaaWqaai aaikdaaeqaaaWccaGLOaGaayzkaaaaaOGaaiilaiaadIhadaqhaaWc baGaaGOmaaqaamaabmaabaGaamyAamaaBaaameaacaaIYaaabeaaaS GaayjkaiaawMcaaaaakiaacYcacqWIMaYscaGGSaGaamiEamaaDaaa leaacaWGUbaabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaikdaaeqaaa WccaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaiilaaaa@4EBE@  …, V i m x 1 i m , x 2 i m ,, x n i m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbWaaSbaaWqaaiaad2gaaeqaaaWcbeaakmaabmaabaGa amiEamaaDaaaleaacaaIXaaabaWaaeWaaeaacaWGPbWaaSbaaWqaai aad2gaaeqaaaWccaGLOaGaayzkaaaaaOGaaiilaiaadIhadaqhaaWc baGaaGOmaaqaamaabmaabaGaamyAamaaBaaameaacaWGTbaabeaaaS GaayjkaiaawMcaaaaakiaacYcacqWIMaYscaGGSaGaamiEamaaDaaa leaacaWGUbaabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaad2gaaeqaaa WccaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaaaaa@4EE6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  affinely independent points, and Пn MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLHoaqa aaaaaaaaWdbiaa=nbiaaa@382B@ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  is any of the hyperplanes passing through these points. In hyperplane Пn MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLHoaqa aaaaaaaaWdbiaa=nbiaaa@382B@ 1 we could choose such points W 1 y 1 1 , y 2 1 ,, y n 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIXaaabeaakmaabmaabaGaamyEamaaDaaaleaacaaIXaaa baWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaiaadMhada qhaaWcbaGaaGOmaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaa kiaacYcacqWIMaYscaGGSaGaamyEamaaDaaaleaacaWGUbaabaWaae WaaeaacaaIXaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaiil aaaa@4A26@   W 2 y 1 2 , y 2 2 ,, y n 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIYaaabeaakmaabmaabaGaamyEamaaDaaaleaacaaIXaaa baWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaOGaaiilaiaadMhada qhaaWcbaGaaGOmaaqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaaaa kiaacYcacqWIMaYscaGGSaGaamyEamaaDaaaleaacaWGUbaabaWaae WaaeaacaaIYaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaiil aaaa@4A2A@  …, W nm y 1 nm , y 2 nm ,, y n nm , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGUbGaeyOeI0IaamyBaaqabaGcdaqadaqaaiaadMhadaqh aaWcbaGaaGymaaqaamaabmaabaGaamOBaiabgkHiTiaad2gaaiaawI cacaGLPaaaaaGccaGGSaGaamyEamaaDaaaleaacaaIYaaabaWaaeWa aeaacaWGUbGaeyOeI0IaamyBaaGaayjkaiaawMcaaaaakiaacYcacq WIMaYscaGGSaGaamyEamaaDaaaleaacaWGUbaabaWaaeWaaeaacaWG UbGaeyOeI0IaamyBaaGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaai aacYcaaaa@5282@  as points V i 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiaacYcaaaa@39BB@   V i 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaacYcaaaa@39BC@  …, V i m , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbWaaSbaaWqaaiaad2gaaeqaaaWcbeaakiaacYcaaaa@39F2@   W 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIXaaabeaakiaacYcaaaa@3896@   W 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIYaaabeaakiaacYcaaaa@3897@  …, W nm MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGUbGaeyOeI0IaamyBaaqabaaaaa@39F3@  are affinely independent. We will write the equation of the hyperplane Пn MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLHoaqa aaaaaaaaWdbiaa=nbiaaa@382B@ 1 [17]:

x 1 x 1 i 1 x 2 x 2 i 1 x n x n i 1 x 1 i 2 x 1 i 1 x 2 i 2 x 2 i 1 x n i 2 x n i 1 x 1 i m x 1 i 1 x 2 i m x 2 i 1 x n i m x n i 1 y 1 1 x 1 i 1 y 2 1 x 2 i 1 y n 1 x n i 1 y 1 nm x 1 i 1 y 2 nm x 2 i 1 y n nm x n i 1 =0. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaqWaaeaafa qaaeWbeaaaaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsisl caWG4bWaa0baaSqaaiaaigdaaeaadaqadaqaaiaadMgadaWgaaadba GaaGymaaqabaaaliaawIcacaGLPaaaaaaakeaacaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamiEamaaDaaaleaacaaIYaaabaWaae WaaeaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWccaGLOaGaayzkaaaa aaGcbaGaeSOjGSeabaGaamiEamaaBaaaleaacaWGUbaabeaakiabgk HiTiaadIhadaqhaaWcbaGaamOBaaqaamaabmaabaGaamyAamaaBaaa meaacaaIXaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiaadIhadaqhaa WcbaGaaGymaaqaamaabmaabaGaamyAamaaBaaameaacaaIYaaabeaa aSGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaaGymaa qaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaa wMcaaaaaaOqaaiaadIhadaqhaaWcbaGaaGOmaaqaamaabmaabaGaam yAamaaBaaameaacaaIYaaabeaaaSGaayjkaiaawMcaaaaakiabgkHi TiaadIhadaqhaaWcbaGaaGOmaaqaamaabmaabaGaamyAamaaBaaame aacaaIXaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiablAcilbqaaiaa dIhadaqhaaWcbaGaamOBaaqaamaabmaabaGaamyAamaaBaaameaaca aIYaaabeaaaSGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWc baGaamOBaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaS GaayjkaiaawMcaaaaaaOqaaiablAciljablAciljablAciljablAci lbqaaiablAciljablAciljablAciljablAcilbqaaiablAcilbqaai ablAciljablAciljablAciljablAcilbqaaiaadIhadaqhaaWcbaGa aGymaaqaamaabmaabaGaamyAamaaBaaameaacaWGTbaabeaaaSGaay jkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaaGymaaqaamaa bmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaa aaaOqaaiaadIhadaqhaaWcbaGaaGOmaaqaamaabmaabaGaamyAamaa BaaameaacaWGTbaabeaaaSGaayjkaiaawMcaaaaakiabgkHiTiaadI hadaqhaaWcbaGaaGOmaaqaamaabmaabaGaamyAamaaBaaameaacaaI XaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiablAcilbqaaiaadIhada qhaaWcbaGaamOBaaqaamaabmaabaGaamyAamaaBaaameaacaWGTbaa beaaaSGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaam OBaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjk aiaawMcaaaaaaOqaaiaadMhadaqhaaWcbaGaaGymaaqaamaabmaaba GaaGymaaGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGa aGymaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaay jkaiaawMcaaaaaaOqaaiaadMhadaqhaaWcbaGaaGOmaaqaamaabmaa baGaaGymaaGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcba GaaGOmaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGa ayjkaiaawMcaaaaaaOqaaiablAcilbqaaiaadMhadaqhaaWcbaGaam OBaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakiabgkHiTiaa dIhadaqhaaWcbaGaamOBaaqaamaabmaabaGaamyAamaaBaaameaaca aIXaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiablAciljablAciljab lAciljablAciljablAcilbqaaiablAciljablAciljablAciljablA ciljablAcilbqaaiablAcilbqaaiablAciljablAciljablAciljab lAciljablAcilbqaaiaadMhadaqhaaWcbaGaaGymaaqaamaabmaaba GaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaaaaGccqGHsislcaWG 4bWaa0baaSqaaiaaigdaaeaadaqadaqaaiaadMgadaWgaaadbaGaaG ymaaqabaaaliaawIcacaGLPaaaaaaakeaacaWG5bWaa0baaSqaaiaa ikdaaeaadaqadaqaaiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaa aaaOGaeyOeI0IaamiEamaaDaaaleaacaaIYaaabaWaaeWaaeaacaWG PbWaaSbaaWqaaiaaigdaaeqaaaWccaGLOaGaayzkaaaaaaGcbaGaeS OjGSeabaGaamyEamaaDaaaleaacaWGUbaabaWaaeWaaeaacaWGUbGa eyOeI0IaamyBaaGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaa WcbaGaamOBaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaa aSGaayjkaiaawMcaaaaaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWa GaaiOlaaaa@08B8@  (4)

It is easily seen that any of the points (3) satisfies equation (4). Indeed, if we substitute the coordinates of any of the points Ul (l = 1, 2,…, N) into the determinant appearing on the left side of this equation instead of x1, x2, …, xn, we obtain the determinant

x 1 l x 1 i 1 x 2 l x 2 i 1 x n l x n i 1 x 1 i 2 x 1 i 1 x 2 i 2 x 2 i 1 x n i 2 x n i 1 x 1 i m x 1 i 1 x 2 i m x 2 i 1 x n i m x n i 1 y 1 1 x 1 i 1 y 2 1 x 2 i 1 y n 1 x n i 1 y 1 nm x 1 i 1 y 2 nm x 2 i 1 y n nm x n i 1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaqWaaeaafa qaaeWbeaaaaaqaaiaadIhadaqhaaWcbaGaaGymaaqaamaabmaabaGa amiBaaGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaaG ymaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjk aiaawMcaaaaaaOqaaiaadIhadaqhaaWcbaGaaGOmaaqaamaabmaaba GaamiBaaGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGa aGOmaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaay jkaiaawMcaaaaaaOqaaiablAcilbqaaiaadIhadaqhaaWcbaGaamOB aaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiabgkHiTiaadI hadaqhaaWcbaGaamOBaaqaamaabmaabaGaamyAamaaBaaameaacaaI XaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiaadIhadaqhaaWcbaGaaG ymaaqaamaabmaabaGaamyAamaaBaaameaacaaIYaaabeaaaSGaayjk aiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaaGymaaqaamaabm aabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaaaa aOqaaiaadIhadaqhaaWcbaGaaGOmaaqaamaabmaabaGaamyAamaaBa aameaacaaIYaaabeaaaSGaayjkaiaawMcaaaaakiabgkHiTiaadIha daqhaaWcbaGaaGOmaaqaamaabmaabaGaamyAamaaBaaameaacaaIXa aabeaaaSGaayjkaiaawMcaaaaaaOqaaiablAcilbqaaiaadIhadaqh aaWcbaGaamOBaaqaamaabmaabaGaamyAamaaBaaameaacaaIYaaabe aaaSGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaamOB aaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkai aawMcaaaaaaOqaaiablAciljablAciljablAciljablAcilbqaaiab lAciljablAciljablAciljablAcilbqaaiablAcilbqaaiablAcilj ablAciljablAciljablAcilbqaaiaadIhadaqhaaWcbaGaaGymaaqa amaabmaabaGaamyAamaaBaaameaacaWGTbaabeaaaSGaayjkaiaawM caaaaakiabgkHiTiaadIhadaqhaaWcbaGaaGymaaqaamaabmaabaGa amyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaaaaaOqaai aadIhadaqhaaWcbaGaaGOmaaqaamaabmaabaGaamyAamaaBaaameaa caWGTbaabeaaaSGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaa WcbaGaaGOmaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaa aSGaayjkaiaawMcaaaaaaOqaaiablAcilbqaaiaadIhadaqhaaWcba GaamOBaaqaamaabmaabaGaamyAamaaBaaameaacaWGTbaabeaaaSGa ayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaamOBaaqaam aabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMca aaaaaOqaaiaadMhadaqhaaWcbaGaaGymaaqaamaabmaabaGaaGymaa GaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaaGymaaqa amaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawM caaaaaaOqaaiaadMhadaqhaaWcbaGaaGOmaaqaamaabmaabaGaaGym aaGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaaGOmaa qaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaa wMcaaaaaaOqaaiablAcilbqaaiaadMhadaqhaaWcbaGaamOBaaqaam aabmaabaGaaGymaaGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqh aaWcbaGaamOBaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabe aaaSGaayjkaiaawMcaaaaaaOqaaiablAciljablAciljablAciljab lAciljablAcilbqaaiablAciljablAciljablAciljablAciljablA cilbqaaiablAcilbqaaiablAciljablAciljablAciljablAciljab lAcilbqaaiaadMhadaqhaaWcbaGaaGymaaqaamaabmaabaGaamOBai abgkHiTiaad2gaaiaawIcacaGLPaaaaaGccqGHsislcaWG4bWaa0ba aSqaaiaaigdaaeaadaqadaqaaiaadMgadaWgaaadbaGaaGymaaqaba aaliaawIcacaGLPaaaaaaakeaacaWG5bWaa0baaSqaaiaaikdaaeaa daqadaqaaiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaaaaaOGaey OeI0IaamiEamaaDaaaleaacaaIYaaabaWaaeWaaeaacaWGPbWaaSba aWqaaiaaigdaaeqaaaWccaGLOaGaayzkaaaaaaGcbaGaeSOjGSeaba GaamyEamaaDaaaleaacaWGUbaabaWaaeWaaeaacaWGUbGaeyOeI0Ia amyBaaGaayjkaiaawMcaaaaakiabgkHiTiaadIhadaqhaaWcbaGaam OBaaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjk aiaawMcaaaaaaaaakiaawEa7caGLiWoacaGGUaaaaa@0E69@  (5)

If l = i1, then the first line of the determinant (5) is zero, and, therefore, it is equal to zero. If l i 2 ,, i m , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiBaiabgI GiopaacmaabaGaamyAamaaBaaaleaacaaIYaaabeaakiaacYcacqWI MaYscaGGSaGaamyAamaaBaaaleaacaWGTbaabeaaaOGaay5Eaiaaw2 haaiaacYcaaaa@41E7@  the determinant (5) is equal to zero due to the fact that its first row coincides with one of the rows with numbers 2, …, m. In case l i 1 , i 2 ,, i m , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiBaiabgM GippaacmaabaGaamyAamaaBaaaleaacaaIXaaabeaakiaacYcacaWG PbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiablAciljaacYcacaWGPb WaaSbaaSqaaiaad2gaaeqaaaGccaGL7bGaayzFaaGaaiilaaaa@4478@  due to the affine dependence of the points V l , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGSbaabeaakiaacYcaaaa@38CB@   V i 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiaacYcaaaa@39BB@   V i 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaacYcaaaa@39BC@  …, V i m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbWaaSbaaWqaaiaad2gaaeqaaaWcbeaaaaa@3938@  the vectors V i 1 V l , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca WGwbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGa amOvamaaBaaaleaacaWGSbaabeaaaOGaay51GaGaaiilaaaa@3D71@   V i 1 V i 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca WGwbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGa amOvamaaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaO Gaay51GaGaaiilaaaa@3E62@   V i 1 V i 3 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca WGwbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGa amOvamaaBaaaleaacaWGPbWaaSbaaWqaaiaaiodaaeqaaaWcbeaaaO Gaay51GaGaaiilaaaa@3E63@  …, V i 1 V i m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca WGwbWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaOGa amOvamaaBaaaleaacaWGPbWaaSbaaWqaaiaad2gaaeqaaaWcbeaaaO Gaay51Gaaaaa@3DE8@  are linearly dependent, therefore, the first m rows of the determinant (5) are linearly dependent, and, therefore, this determinant is equal to zero in this case too.

Thus, all N points (3) belong to the hyperplane Пn MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLHoaqa aaaaaaaaWdbiaa=nbiaaa@382B@ 1, which contradicts the lemma condition. Therefore, our assumption that any n points from the set (3) are affinely dependent is not true, which means that among the points (3) there really are n affinely independent points. Lemma 1 is proven.

(1) results in:

B(l) = (S + τ(l) KS) h(l) + b + τ(l) kb, l = 1, 2, …, N, (6)

where B(l) = (B1(l), B2(l), B3(l))T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  the true vector of magnetic induction at the same point in space as the measured vector h(l), l = 1, 2,…, N.

We rewrite the equality (6) in an expanded form:

s 11 + τ l t 11 s 12 + τ l t 12 s 13 + τ l t 13 s 21 + τ l t 21 s 22 + τ l t 22 s 23 + τ l t 23 s 31 + τ l t 31 s 32 + τ l t 32 s 33 + τ l t 33 h 1 (l) h 2 (l) h 3 (l) + b 1 + τ l θ 1 b 2 + τ l θ 2 b 3 + τ l θ 3 = B 1 l B 2 l B 3 l , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeWadaaabaGaam4CamaaBaaaleaacaaIXaGaaGymaaqabaGccqGH RaWkcaGIepWaaWbaaSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPa aaaaGccaWG0bWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadoha daWgaaWcbaGaaGymaiaaikdaaeqaaOGaey4kaSIaaOiXdmaaCaaale qabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaaGjcVlaadsha daWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaam4CamaaBaaaleaaca aIXaGaaG4maaqabaGccqGHRaWkcaGIepWaaWbaaSqabeaadaqadaqa aiaadYgaaiaawIcacaGLPaaaaaGccaaMi8UaamiDamaaBaaaleaaca aIXaGaaG4maaqabaaakeaacaWGZbWaaSbaaSqaaiaaikdacaaIXaaa beaakiabgUcaRiaaks8adaahaaWcbeqaamaabmaabaGaamiBaaGaay jkaiaawMcaaaaakiaayIW7caWG0bWaaSbaaSqaaiaaikdacaaIXaaa beaaaOqaaiaadohadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaey4kaS IaaOiXdmaaCaaaleqabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaa aOGaaGjcVlaadshadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaam 4CamaaBaaaleaacaaIYaGaaG4maaqabaGccqGHRaWkcaGIepWaaWba aSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaWG0bWaaS baaSqaaiaaikdacaaIZaaabeaaaOqaaiaadohadaWgaaWcbaGaaG4m aiaaigdaaeqaaOGaey4kaSIaaOiXdmaaCaaaleqabaWaaeWaaeaaca WGSbaacaGLOaGaayzkaaaaaOGaaGjcVlaadshadaWgaaWcbaGaaG4m aiaaigdaaeqaaaGcbaGaam4CamaaBaaaleaacaaIZaGaaGOmaaqaba GccqGHRaWkcaGIepWaaWbaaSqabeaadaqadaqaaiaadYgaaiaawIca caGLPaaaaaGccaaMi8UaamiDamaaBaaaleaacaaIZaGaaGOmaaqaba aakeaacaWGZbWaaSbaaSqaaiaaiodacaaIZaaabeaakiabgUcaRiaa ks8adaahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaaki aayIW7caWG0bWaaSbaaSqaaiaaiodacaaIZaaabeaaaaaakiaawIca caGLPaaadaqadaqaauaabeqadeaaaeaacaWGObWaa0baaSqaaiaaig daaeaacaGGOaGaamiBaiaacMcaaaaakeaacaWGObWaa0baaSqaaiaa ikdaaeaacaGGOaGaamiBaiaacMcaaaaakeaacaWGObWaa0baaSqaai aaiodaaeaacaGGOaGaamiBaiaacMcaaaaaaaGccaGLOaGaayzkaaGa ey4kaSYaaeWaaeaafaqabeWabaaabaGaamOyamaaBaaaleaacaaIXa aabeaakiabgUcaRiaaks8adaahaaWcbeqaamaabmaabaGaamiBaaGa ayjkaiaawMcaaaaakiaayIW7caGI4oWaaSbaaSqaaiaaigdaaeqaaa GcbaGaamOyamaaBaaaleaacaaIYaaabeaakiabgUcaRiaaks8adaah aaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaayIW7ca GI4oWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOyamaaBaaaleaacaaI ZaaabeaakiabgUcaRiaaks8adaahaaWcbeqaamaabmaabaGaamiBaa GaayjkaiaawMcaaaaakiaayIW7caGI4oWaaSbaaSqaaiaaiodaaeqa aaaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabmqaaaqaai aadkeadaqhaaWcbaGaaGymaaqaamaabmaabaGaamiBaaGaayjkaiaa wMcaaaaaaOqaaiaadkeadaqhaaWcbaGaaGOmaaqaamaabmaabaGaam iBaaGaayjkaiaawMcaaaaaaOqaaiaadkeadaqhaaWcbaGaaG4maaqa amaabmaabaGaamiBaaGaayjkaiaawMcaaaaaaaaakiaawIcacaGLPa aacaGGSaaaaa@DE90@  (7)

l = 1, 2, …, N. We write each of the N vector equalities (7) as a system of three scalar equalities:

s i1 + τ l t i1 h 1 (l) + s i2 + τ l t i2 h 2 (l) + s i3 + τ l t i3 h 3 (l) + b i + τ l θ i = B i l ,i=1,2,3, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGZbWaaSbaaSqaaiaadMgacaaIXaaabeaakiabgUcaRiaaks8adaah aaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaayIW7ca WG0bWaaSbaaSqaaiaadMgacaaIXaaabeaaaOGaayjkaiaawMcaaiaa dIgadaqhaaWcbaGaaGymaaqaaiaacIcacaWGSbGaaiykaaaakiabgU caRmaabmaabaGaam4CamaaBaaaleaacaWGPbGaaGOmaaqabaGccqGH RaWkcaGIepWaaWbaaSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPa aaaaGccaaMi8UaamiDamaaBaaaleaacaWGPbGaaGOmaaqabaaakiaa wIcacaGLPaaacaWGObWaa0baaSqaaiaaikdaaeaacaGGOaGaamiBai aacMcaaaGccqGHRaWkdaqadaqaaiaadohadaWgaaWcbaGaamyAaiaa iodaaeqaaOGaey4kaSIaaOiXdmaaCaaaleqabaWaaeWaaeaacaWGSb aacaGLOaGaayzkaaaaaOGaaGjcVlaadshadaWgaaWcbaGaamyAaiaa iodaaeqaaaGccaGLOaGaayzkaaGaamiAamaaDaaaleaacaaIZaaaba GaaiikaiaadYgacaGGPaaaaOGaey4kaSIaamOyamaaBaaaleaacaWG PbaabeaakiabgUcaRiaaks8adaahaaWcbeqaamaabmaabaGaamiBaa GaayjkaiaawMcaaaaakiaayIW7caGI4oWaaSbaaSqaaiaadMgaaeqa aOGaeyypa0JaamOqamaaDaaaleaacaWGPbaabaWaaeWaaeaacaWGSb aacaGLOaGaayzkaaaaaOGaaiilaiaaywW7caWGPbGaeyypa0JaaGym aiaacYcacaaIYaGaaiilaiaaiodacaGGSaaaaa@871F@

l = 1, 2,…, N.

We could introduce into consideration a penalty function of 24 variables sij, tij (i, j = 1, 2, 3), bi, θi (i = 1, 2, 3):

Φ= l=1 N i=1 3 B i l τ l θ i b i s i1 + τ l t i1 h 1 (l) s i2 + τ l t i2 h 2 (l) s i3 + τ l t i3 h 3 (l) 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaey ypa0ZaaabCaeaadaaeWbqaamaadmaabaGaamOqamaaDaaaleaacaWG PbaabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaeyOeI0IaaO iXdmaaCaaaleqabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGa aGjcVlaakI7adaWgaaWcbaGaamyAaaqabaGccqGHsislcaWGIbWaaS baaSqaaiaadMgaaeqaaOGaeyOeI0YaaeWaaeaacaWGZbWaaSbaaSqa aiaadMgacaaIXaaabeaakiabgUcaRiaaks8adaahaaWcbeqaamaabm aabaGaamiBaaGaayjkaiaawMcaaaaakiaayIW7caWG0bWaaSbaaSqa aiaadMgacaaIXaaabeaaaOGaayjkaiaawMcaaiaadIgadaqhaaWcba GaaGymaaqaaiaacIcacaWGSbGaaiykaaaakiabgkHiTmaabmaabaGa am4CamaaBaaaleaacaWGPbGaaGOmaaqabaGccqGHRaWkcaGIepWaaW baaSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaaMi8Ua amiDamaaBaaaleaacaWGPbGaaGOmaaqabaaakiaawIcacaGLPaaaca WGObWaa0baaSqaaiaaikdaaeaacaGGOaGaamiBaiaacMcaaaGccqGH sisldaqadaqaaiaadohadaWgaaWcbaGaamyAaiaaiodaaeqaaOGaey 4kaSIaaOiXdmaaCaaaleqabaWaaeWaaeaacaWGSbaacaGLOaGaayzk aaaaaOGaaGjcVlaadshadaWgaaWcbaGaamyAaiaaiodaaeqaaaGcca GLOaGaayzkaaGaamiAamaaDaaaleaacaaIZaaabaGaaiikaiaadYga caGGPaaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaaqaai aadMgacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aaWcbaGaamiB aiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccaGGUaaaaa@900A@  (8)

The algorithm for solving the problem of calibrating the measuring axes of the MU is reduced to searching by the least squares method [18] for such values of variables sij, tij (i, j = 1, 2, 3), bi, θi (i = 1, 2, 3) that deliver the minimum of function Ф at a given set of measurement vectors {h(l)} (l = 1, 2,…, N). For this purpose, it is necessary to study the function Ф for the extremum [19]. We could write down the necessary condition for the local extremum of this function:

Φ b i =2 l=1 N B i l τ l θ i b i s i1 + τ l t i1 h 1 (l) s i2 + τ l t i2 h 2 (l) s i3 + τ l t i3 h 3 (l) =0,i=1,2,3, Φ θ i =2 l=1 N τ l B i l τ l θ i b i s i1 + τ l t i1 h 1 (l) s i2 + τ l t i2 h 2 (l) s i3 + τ l t i3 h 3 (l) =0,i=1,2,3, Φ s ij =2 l=1 N h j (l) B i l τ l θ i b i s i1 + τ l t i1 h 1 (l) s i2 + τ l t i2 h 2 (l) s i3 + τ l t i3 h 3 (l) =0,i,j=1,2,3, Φ t ij =2 l=1 N τ l h j (l) B i l τ l θ i b i s i1 + τ l t i1 h 1 (l) s i2 + τ l t i2 h 2 (l) s i3 + τ l t i3 h 3 (l) =0,i,j=1,2,3. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeabbaaaaeaadaWcaaqaaiabgkGi2kabfA6agbqaaiabgkGi2kaa dkgadaWgaaWcbaGaamyAaaqabaaaaOGaeyypa0JaeyOeI0IaaGOmam aaqahabaWaamWaaeaacaWGcbWaa0baaSqaaiaadMgaaeaadaqadaqa aiaadYgaaiaawIcacaGLPaaaaaGccaaMb8UaeyOeI0IaaOiXdmaaCa aaleqabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaaGjcVlaa kI7adaWgaaWcbaGaamyAaaqabaGccqGHsislcaWGIbWaaSbaaSqaai aadMgaaeqaaOGaeyOeI0YaaeWaaeaacaWGZbWaaSbaaSqaaiaadMga caaIXaaabeaakiabgUcaRiaaks8adaahaaWcbeqaamaabmaabaGaam iBaaGaayjkaiaawMcaaaaakiaayIW7caWG0bWaaSbaaSqaaiaadMga caaIXaaabeaaaOGaayjkaiaawMcaaiaadIgadaqhaaWcbaGaaGymaa qaaiaacIcacaWGSbGaaiykaaaakiabgkHiTmaabmaabaGaam4Camaa BaaaleaacaWGPbGaaGOmaaqabaGccqGHRaWkcaGIepWaaWbaaSqabe aadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaaMi8UaamiDamaa BaaaleaacaWGPbGaaGOmaaqabaaakiaawIcacaGLPaaacaWGObWaa0 baaSqaaiaaikdaaeaacaGGOaGaamiBaiaacMcaaaGccqGHsisldaqa daqaaiaadohadaWgaaWcbaGaamyAaiaaiodaaeqaaOGaey4kaSIaaO iXdmaaCaaaleqabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGa aGjcVlaadshadaWgaaWcbaGaamyAaiaaiodaaeqaaaGccaGLOaGaay zkaaGaamiAamaaDaaaleaacaaIZaaabaGaaiikaiaadYgacaGGPaaa aaGccaGLBbGaayzxaaaaleaacaWGSbGaeyypa0JaaGymaaqaaiaad6 eaa0GaeyyeIuoakiabg2da9iaaicdacaGGSaGaaGjbVlaaysW7caWG PbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaaaba WaaSaaaeaacqGHciITcqqHMoGraeaacqGHciITcaGI4oWaaSbaaSqa aiaadMgaaeqaaaaakiabg2da9iabgkHiTiaaikdadaaeWbqaaiaaks 8adaahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakmaa dmaabaGaamOqamaaDaaaleaacaWGPbaabaWaaeWaaeaacaWGSbaaca GLOaGaayzkaaaaaOGaeyOeI0IaaOiXdmaaCaaaleqabaWaaeWaaeaa caWGSbaacaGLOaGaayzkaaaaaOGaaGjcVlaakI7adaWgaaWcbaGaam yAaaqabaGccqGHsislcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaeyOe I0YaaeWaaeaacaWGZbWaaSbaaSqaaiaadMgacaaIXaaabeaakiabgU caRiaaks8adaahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMca aaaakiaayIW7caWG0bWaaSbaaSqaaiaadMgacaaIXaaabeaaaOGaay jkaiaawMcaaiaadIgadaqhaaWcbaGaaGymaaqaaiaacIcacaWGSbGa aiykaaaakiabgkHiTmaabmaabaGaam4CamaaBaaaleaacaWGPbGaaG OmaaqabaGccqGHRaWkcaGIepWaaWbaaSqabeaadaqadaqaaiaadYga aiaawIcacaGLPaaaaaGccaaMi8UaamiDamaaBaaaleaacaWGPbGaaG OmaaqabaaakiaawIcacaGLPaaacaWGObWaa0baaSqaaiaaikdaaeaa caGGOaGaamiBaiaacMcaaaGccqGHsisldaqadaqaaiaadohadaWgaa WcbaGaamyAaiaaiodaaeqaaOGaey4kaSIaaOiXdmaaCaaaleqabaWa aeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaaGjcVlaadshadaWgaa WcbaGaamyAaiaaiodaaeqaaaGccaGLOaGaayzkaaGaamiAamaaDaaa leaacaaIZaaabaGaaiikaiaadYgacaGGPaaaaaGccaGLBbGaayzxaa aaleaacaWGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiab g2da9iaaicdacaGGSaGaaGjbVlaaysW7caWGPbGaeyypa0JaaGymai aacYcacaaIYaGaaiilaiaaiodacaGGSaaabaWaaSaaaeaacqGHciIT cqqHMoGraeaacqGHciITcaWGZbWaaSbaaSqaaiaadMgacaWGQbaabe aaaaGccqGH9aqpcqGHsislcaaIYaWaaabCaeaacaWGObWaa0baaSqa aiaadQgaaeaacaGGOaGaamiBaiaacMcaaaGcdaWadaqaaiaadkeada qhaaWcbaGaamyAaaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaa kiabgkHiTiaaks8adaahaaWcbeqaamaabmaabaGaamiBaaGaayjkai aawMcaaaaakiaayIW7caGI4oWaaSbaaSqaaiaadMgaaeqaaOGaeyOe I0IaamOyamaaBaaaleaacaWGPbaabeaakiabgkHiTmaabmaabaGaam 4CamaaBaaaleaacaWGPbGaaGymaaqabaGccqGHRaWkcaGIepWaaWba aSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaaMi8Uaam iDamaaBaaaleaacaWGPbGaaGymaaqabaaakiaawIcacaGLPaaacaWG ObWaa0baaSqaaiaaigdaaeaacaGGOaGaamiBaiaacMcaaaGccqGHsi sldaqadaqaaiaadohadaWgaaWcbaGaamyAaiaaikdaaeqaaOGaey4k aSIaaOiXdmaaCaaaleqabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaa aaaOGaaGjcVlaadshadaWgaaWcbaGaamyAaiaaikdaaeqaaaGccaGL OaGaayzkaaGaamiAamaaDaaaleaacaaIYaaabaGaaiikaiaadYgaca GGPaaaaOGaeyOeI0YaaeWaaeaacaWGZbWaaSbaaSqaaiaadMgacaaI ZaaabeaakiabgUcaRiaaks8adaahaaWcbeqaamaabmaabaGaamiBaa GaayjkaiaawMcaaaaakiaayIW7caWG0bWaaSbaaSqaaiaadMgacaaI ZaaabeaaaOGaayjkaiaawMcaaiaadIgadaqhaaWcbaGaaG4maaqaai aacIcacaWGSbGaaiykaaaaaOGaay5waiaaw2faaaWcbaGaamiBaiab g2da9iaaigdaaeaacaWGobaaniabggHiLdGccqGH9aqpcaaIWaGaai ilaiaaysW7caaMe8UaamyAaiaacYcacaWGQbGaeyypa0JaaGymaiaa cYcacaaIYaGaaiilaiaaiodacaGGSaaabaWaaSaaaeaacqGHciITcq qHMoGraeaacqGHciITcaWG0bWaaSbaaSqaaiaadMgacaWGQbaabeaa aaGccqGH9aqpcqGHsislcaaIYaWaaabCaeaacaGIepWaaWbaaSqabe aadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaWGObWaa0baaSqa aiaadQgaaeaacaGGOaGaamiBaiaacMcaaaGcdaWadaqaaiaadkeada qhaaWcbaGaamyAaaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaa kiabgkHiTiaaks8adaahaaWcbeqaamaabmaabaGaamiBaaGaayjkai aawMcaaaaakiaayIW7caGI4oWaaSbaaSqaaiaadMgaaeqaaOGaeyOe I0IaamOyamaaBaaaleaacaWGPbaabeaakiabgkHiTmaabmaabaGaam 4CamaaBaaaleaacaWGPbGaaGymaaqabaGccqGHRaWkcaGIepWaaWba aSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaaMi8Uaam iDamaaBaaaleaacaWGPbGaaGymaaqabaaakiaawIcacaGLPaaacaWG ObWaa0baaSqaaiaaigdaaeaacaGGOaGaamiBaiaacMcaaaGccqGHsi sldaqadaqaaiaadohadaWgaaWcbaGaamyAaiaaikdaaeqaaOGaey4k aSIaaOiXdmaaCaaaleqabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaa aaaOGaaGjcVlaadshadaWgaaWcbaGaamyAaiaaikdaaeqaaaGccaGL OaGaayzkaaGaamiAamaaDaaaleaacaaIYaaabaGaaiikaiaadYgaca GGPaaaaOGaeyOeI0YaaeWaaeaacaWGZbWaaSbaaSqaaiaadMgacaaI ZaaabeaakiabgUcaRiaaks8adaahaaWcbeqaamaabmaabaGaamiBaa GaayjkaiaawMcaaaaakiaayIW7caWG0bWaaSbaaSqaaiaadMgacaaI ZaaabeaaaOGaayjkaiaawMcaaiaadIgadaqhaaWcbaGaaG4maaqaai aacIcacaWGSbGaaiykaaaaaOGaay5waiaaw2faaaWcbaGaamiBaiab g2da9iaaigdaaeaacaWGobaaniabggHiLdGccqGH9aqpcaaIWaGaai ilaiaaysW7caaMe8UaamyAaiaacYcacaWGQbGaeyypa0JaaGymaiaa cYcacaaIYaGaaiilaiaaiodacaGGUaaaaaGaay5Eaaaaaa@E410@  (9)

It is required to find the stationary points of the function Ф, that is the solution of system (9) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  a system of linear algebraic equations concerning 24 unknowns sij, tij (i, j = 1, 2, 3), bi, θi (i = 1, 2, 3).

For convenience, we will divide (9) into three systems

N b i + θ i l=1 N τ l + k=1 3 s ik l=1 N h k (l) + k=1 3 t ik l=1 N τ l h k (l) = l=1 N B i l , b i l=1 N τ l + θ i l=1 N τ l 2 + k=1 3 s ik l=1 N τ l h k (l) + k=1 3 t ik l=1 N τ l 2 h k (l) = l=1 N τ l B i l , b i l=1 N h j (l) + θ i l=1 N τ l h j (l) + k=1 3 s ik l=1 N h k (l) h j (l) + k=1 3 t ik l=1 N τ l h k (l) h j (l) = l=1 N h j (l) B i l ,j=1,2,3, b i l=1 N τ l h j (l) + θ i l=1 N τ l 2 h j (l) + k=1 3 s ik l=1 N τ l h k (l) h j (l) + k=1 3 t ik l=1 N τ l 2 h k (l) h j (l) = l=1 N τ l B i l h j (l) ,j=1,2,3, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeabbaaaaeaacaWGobGaamOyamaaBaaaleaacaWGPbaabeaakiab gUcaRiaakI7adaWgaaWcbaGaamyAaaqabaGcdaaeWbqaaiaaks8ada ahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaayIW7 aSqaaiaadYgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOGaey 4kaSYaaabCaeaadaWadaqaaiaadohadaWgaaWcbaGaamyAaiaadUga aeqaaOWaaabCaeaacaWGObWaa0baaSqaaiaadUgaaeaacaGGOaGaam iBaiaacMcaaaaabaGaamiBaiabg2da9iaaigdaaeaacaWGobaaniab ggHiLdaakiaawUfacaGLDbaaaSqaaiaadUgacqGH9aqpcaaIXaaaba GaaG4maaqdcqGHris5aOGaey4kaSYaaabCaeaadaWadaqaaiaadsha daWgaaWcbaGaamyAaiaadUgaaeqaaOWaaabCaeaacaGIepWaaWbaaS qabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaWGObWaa0ba aSqaaiaadUgaaeaacaGGOaGaamiBaiaacMcaaaaabaGaamiBaiabg2 da9iaaigdaaeaacaWGobaaniabggHiLdaakiaawUfacaGLDbaaaSqa aiaadUgacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aOGaaGjbVl abg2da9maaqahabaGaamOqamaaDaaaleaacaWGPbaabaWaaeWaaeaa caWGSbaacaGLOaGaayzkaaaaaaqaaiaadYgacqGH9aqpcaaIXaaaba GaamOtaaqdcqGHris5aOGaaiilaaqaaiaadkgadaWgaaWcbaGaamyA aaqabaGcdaaeWbqaaiaaks8adaahaaWcbeqaamaabmaabaGaamiBaa GaayjkaiaawMcaaaaakiaayIW7aSqaaiaadYgacqGH9aqpcaaIXaaa baGaamOtaaqdcqGHris5aOGaey4kaSIaaOiUdmaaBaaaleaacaWGPb aabeaakmaaqahabaWaaeWaaeaacaGIepWaaWbaaSqabeaadaqadaqa aiaadYgaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaaabaGaamiBaiabg2da9iaaigdaaeaacaWGobaaniab ggHiLdGccqGHRaWkdaaeWbqaamaadmaabaGaam4CamaaBaaaleaaca WGPbGaam4AaaqabaGcdaaeWbqaaiaaks8adaahaaWcbeqaamaabmaa baGaamiBaaGaayjkaiaawMcaaaaakiaadIgadaqhaaWcbaGaam4Aaa qaaiaacIcacaWGSbGaaiykaaaakiaayIW7aSqaaiaadYgacqGH9aqp caaIXaaabaGaamOtaaqdcqGHris5aaGccaGLBbGaayzxaaaaleaaca WGRbGaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIuoakiabgUcaRmaa qahabaWaamWaaeaacaWG0bWaaSbaaSqaaiaadMgacaWGRbaabeaakm aaqahabaWaaeWaaeaacaGIepWaaWbaaSqabeaadaqadaqaaiaadYga aiaawIcacaGLPaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaGccaWGObWaa0baaSqaaiaadUgaaeaacaGGOaGaamiBaiaacMca aaGccaaMi8oaleaacaWGSbGaeyypa0JaaGymaaqaaiaad6eaa0Gaey yeIuoaaOGaay5waiaaw2faaaWcbaGaam4Aaiabg2da9iaaigdaaeaa caaIZaaaniabggHiLdGccqGH9aqpdaaeWbqaaiaaks8adaahaaWcbe qaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaadkeadaqhaaWc baGaamyAaaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaaaeaaca WGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaacYcaaeaa caWGIbWaaSbaaSqaaiaadMgaaeqaaOWaaabCaeaacaWGObWaa0baaS qaaiaadQgaaeaacaGGOaGaamiBaiaacMcaaaaabaGaamiBaiabg2da 9iaaigdaaeaacaWGobaaniabggHiLdGccqGHRaWkcaGI4oWaaSbaaS qaaiaadMgaaeqaaOWaaabCaeaacaGIepWaaWbaaSqabeaadaqadaqa aiaadYgaaiaawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaadQgaae aacaGGOaGaamiBaiaacMcaaaaabaGaamiBaiabg2da9iaaigdaaeaa caWGobaaniabggHiLdGccqGHRaWkdaaeWbqaamaadmaabaGaam4Cam aaBaaaleaacaWGPbGaam4AaaqabaGcdaaeWbqaaiaadIgadaqhaaWc baGaam4AaaqaaiaacIcacaWGSbGaaiykaaaakiaadIgadaqhaaWcba GaamOAaaqaaiaacIcacaWGSbGaaiykaaaaaeaacaWGSbGaeyypa0Ja aGymaaqaaiaad6eaa0GaeyyeIuoaaOGaay5waiaaw2faaaWcbaGaam 4Aaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdGccqGHRaWkdaae WbqaamaadmaabaGaamiDamaaBaaaleaacaWGPbGaam4AaaqabaGcda aeWbqaaiaaks8adaahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaa wMcaaaaakiaadIgadaqhaaWcbaGaam4AaaqaaiaacIcacaWGSbGaai ykaaaakiaadIgadaqhaaWcbaGaamOAaaqaaiaacIcacaWGSbGaaiyk aaaaaeaacaWGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaO Gaay5waiaaw2faaaWcbaGaam4Aaiabg2da9iaaigdaaeaacaaIZaaa niabggHiLdGccqGH9aqpdaaeWbqaaiaadIgadaqhaaWcbaGaamOAaa qaaiaacIcacaWGSbGaaiykaaaakiaadkeadaqhaaWcbaGaamyAaaqa amaabmaabaGaamiBaaGaayjkaiaawMcaaaaaaeaacaWGSbGaeyypa0 JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaacYcacaaMf8UaamOAaiab g2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaaqaaiaadk gadaWgaaWcbaGaamyAaaqabaGcdaaeWbqaaiaaks8adaahaaWcbeqa amaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaadIgadaqhaaWcba GaamOAaaqaaiaacIcacaWGSbGaaiykaaaaaeaacaWGSbGaeyypa0Ja aGymaaqaaiaad6eaa0GaeyyeIuoakiabgUcaRiaakI7adaWgaaWcba GaamyAaaqabaGcdaaeWbqaamaabmaabaGaaOiXdmaaCaaaleqabaWa aeWaaeaacaWGSbaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOGaamiAamaaDaaaleaacaWGQbaabaGaaiik aiaadYgacaGGPaaaaaqaaiaadYgacqGH9aqpcaaIXaaabaGaamOtaa qdcqGHris5aOGaey4kaSYaaabCaeaadaWadaqaaiaadohadaWgaaWc baGaamyAaiaadUgaaeqaaOWaaabCaeaacaGIepWaaWbaaSqabeaada qadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaa dUgaaeaacaGGOaGaamiBaiaacMcaaaGccaWGObWaa0baaSqaaiaadQ gaaeaacaGGOaGaamiBaiaacMcaaaaabaGaamiBaiabg2da9iaaigda aeaacaWGobaaniabggHiLdaakiaawUfacaGLDbaaaSqaaiaadUgacq GH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aOGaey4kaSYaaabCaeaa daWadaqaaiaadshadaWgaaWcbaGaamyAaiaadUgaaeqaaOWaaabCae aadaqadaqaaiaaks8adaahaaWcbeqaamaabmaabaGaamiBaaGaayjk aiaawMcaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki aadIgadaqhaaWcbaGaam4AaaqaaiaacIcacaWGSbGaaiykaaaakiaa dIgadaqhaaWcbaGaamOAaaqaaiaacIcacaWGSbGaaiykaaaaaeaaca WGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaOGaay5waiaa w2faaaWcbaGaam4Aaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLd GccqGH9aqpdaaeWbqaaiaaks8adaahaaWcbeqaamaabmaabaGaamiB aaGaayjkaiaawMcaaaaakiaadkeadaqhaaWcbaGaamyAaaqaamaabm aabaGaamiBaaGaayjkaiaawMcaaaaakiaadIgadaqhaaWcbaGaamOA aaqaaiaacIcacaWGSbGaaiykaaaaaeaacaWGSbGaeyypa0JaaGymaa qaaiaad6eaa0GaeyyeIuoakiaacYcacaaMf8UaamOAaiabg2da9iaa igdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaaaaaiaawUhaaaaa@D81B@  (10)

i = 1, 2, 3.

We might note that the i-th system (10) is a system of linear algebraic equations relatively to eight unknowns bi, θi, si1, si2, si3, ti1, ti2, ti3, i = 1, 2, 3.

We can prove that each of the three systems of equations (10) has the only solution. To do this, it is sufficient to show that the fundamental matrix of each of these three systems is not degenerate. The main matrix of each of the indicated systems is the Gram matrix, composed of the scalar products of the following eight vectors:

1,1,,1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaiilaiaaigdacaGGSaGaeSOjGSKaaiilaiaaigdaaiaawIca caGLPaaacaGGSaaaaa@3DB5@   τ 1 , τ 2 ,, τ N , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHepaDdaahaaWcbeqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaa kiaacYcacqaHepaDdaahaaWcbeqaamaabmaabaGaaGOmaaGaayjkai aawMcaaaaakiaacYcacqWIMaYscaGGSaGaeqiXdq3aaWbaaSqabeaa daqadaqaaiaad6eaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaaca GGSaaaaa@485D@   h i 1 , h i 2 ,, h i N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGObWaa0baaSqaaiaadMgaaeaadaqadaqaaiaaigdaaiaawIcacaGL PaaaaaGccaGGSaGaamiAamaaDaaaleaacaWGPbaabaWaaeWaaeaaca aIYaaacaGLOaGaayzkaaaaaOGaaiilaiablAciljaacYcacaWGObWa a0baaSqaaiaadMgaaeaadaqadaqaaiaad6eaaiaawIcacaGLPaaaaa aakiaawIcacaGLPaaaaaa@47EF@  ( i=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaaaaa@3BA1@  ),

τ 1 h i 1 , τ 2 h i 2 ,, τ N h i N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHepaDdaahaaWcbeqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaa kiaadIgadaqhaaWcbaGaamyAaaqaamaabmaabaGaaGymaaGaayjkai aawMcaaaaakiaacYcacqaHepaDdaahaaWcbeqaamaabmaabaGaaGOm aaGaayjkaiaawMcaaaaakiaadIgadaqhaaWcbaGaamyAaaqaamaabm aabaGaaGOmaaGaayjkaiaawMcaaaaakiaacYcacqWIMaYscaGGSaGa eqiXdq3aaWbaaSqabeaadaqadaqaaiaad6eaaiaawIcacaGLPaaaaa GccaWGObWaa0baaSqaaiaadMgaaeaadaqadaqaaiaad6eaaiaawIca caGLPaaaaaaakiaawIcacaGLPaaaaaa@54C8@  ( i=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaaaaa@3BA1@  ). (11)

In this case, the scalar product of two vectors is defined as the sum of the products of their components with the same numbers.

We will prove that the system of vectors (11) is linearly independent, which will lead to the non-degeneracy of the Gram matrix of this system [20], that is the main matrix of each of these three systems of equations (10). There could be proof by contradiction. We assume that the system of vectors (11) is linearly dependent. Then the rank of the matrix is

1 τ 1 h 1 1 h 2 1 h 3 1 τ 1 h 1 1 τ 1 h 2 1 τ 1 h 3 1 1 τ 2 h 1 2 h 2 2 h 3 2 τ 2 h 1 2 τ 2 h 2 2 τ 2 h 3 2 1 τ N h 1 N h 2 N h 3 N τ N h 1 N τ N h 2 N τ N h 3 N , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qaaeabiaaaaaaabaGaaGymaaqaaiabes8a0naaCaaaleqabaWaaeWa aeaacaaIXaaacaGLOaGaayzkaaaaaaGcbaGaamiAamaaDaaaleaaca aIXaaabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaaGcbaGaamiA amaaDaaaleaacaaIYaaabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaa aaaaGcbaGaamiAamaaDaaaleaacaaIZaaabaWaaeWaaeaacaaIXaaa caGLOaGaayzkaaaaaaGcbaGaeqiXdq3aaWbaaSqabeaadaqadaqaai aaigdaaiaawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaaigdaaeaa daqadaqaaiaaigdaaiaawIcacaGLPaaaaaaakeaacqaHepaDdaahaa WcbeqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakiaadIgadaqh aaWcbaGaaGOmaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaaaO qaaiabes8a0naaCaaaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaaaOGaamiAamaaDaaaleaacaaIZaaabaWaaeWaaeaacaaIXaaaca GLOaGaayzkaaaaaaGcbaGaaGymaaqaaiabes8a0naaCaaaleqabaWa aeWaaeaacaaIYaaacaGLOaGaayzkaaaaaaGcbaGaamiAamaaDaaale aacaaIXaaabaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaaGcbaGa amiAamaaDaaaleaacaaIYaaabaWaaeWaaeaacaaIYaaacaGLOaGaay zkaaaaaaGcbaGaamiAamaaDaaaleaacaaIZaaabaWaaeWaaeaacaaI YaaacaGLOaGaayzkaaaaaaGcbaGaeqiXdq3aaWbaaSqabeaadaqada qaaiaaikdaaiaawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaaigda aeaadaqadaqaaiaaikdaaiaawIcacaGLPaaaaaaakeaacqaHepaDda ahaaWcbeqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaaaakiaadIga daqhaaWcbaGaaGOmaaqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaa aaaOqaaiabes8a0naaCaaaleqabaWaaeWaaeaacaaIYaaacaGLOaGa ayzkaaaaaOGaamiAamaaDaaaleaacaaIZaaabaWaaeWaaeaacaaIYa aacaGLOaGaayzkaaaaaaGcbaGaeSOjGSeabaGaeSOjGSeabaGaeSOj GSeabaGaeSOjGSeabaGaeSOjGSeabaGaeSOjGSKaeSOjGSKaeSOjGS eabaGaeSOjGSKaeSOjGSKaeSOjGSeabaGaeSOjGSKaeSOjGSKaeSOj GSeabaGaaGymaaqaaiabes8a0naaCaaaleqabaWaaeWaaeaacaWGob aacaGLOaGaayzkaaaaaaGcbaGaamiAamaaDaaaleaacaaIXaaabaWa aeWaaeaacaWGobaacaGLOaGaayzkaaaaaaGcbaGaamiAamaaDaaale aacaaIYaaabaWaaeWaaeaacaWGobaacaGLOaGaayzkaaaaaaGcbaGa amiAamaaDaaaleaacaaIZaaabaWaaeWaaeaacaWGobaacaGLOaGaay zkaaaaaaGcbaGaeqiXdq3aaWbaaSqabeaadaqadaqaaiaad6eaaiaa wIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaaigdaaeaadaqadaqaai aad6eaaiaawIcacaGLPaaaaaaakeaacqaHepaDdaahaaWcbeqaamaa bmaabaGaamOtaaGaayjkaiaawMcaaaaakiaadIgadaqhaaWcbaGaaG OmaaqaamaabmaabaGaamOtaaGaayjkaiaawMcaaaaaaOqaaiabes8a 0naaCaaaleqabaWaaeWaaeaacaWGobaacaGLOaGaayzkaaaaaOGaam iAamaaDaaaleaacaaIZaaabaWaaeWaaeaacaWGobaacaGLOaGaayzk aaaaaaaaaOGaayjkaiaawMcaaiaacYcaaaa@C914@

its columns are composed of components of vectors (11), less than 8. Therefore, any minor of the 8th order of this matrix is equal to zero (we assume that N 8), which implies the validity of the equality

1 x 1 x 2 x 3 x 4 x 5 x 6 x 7 1 τ i 1 h 1 i 1 h 2 i 1 h 3 i 1 τ i 1 h 1 i 1 τ i 1 h 2 i 1 τ i 1 h 3 i 1 1 τ i 2 h 1 i 2 h 2 i 2 h 3 i 2 τ i 2 h 1 i 2 τ i 2 h 2 i 2 τ i 2 h 3 i 2 1 τ i 7 h 1 i 7 h 2 i 7 h 3 i 7 τ i 7 h 1 i 7 τ i 7 h 2 i 7 τ i 7 h 3 i 7 =0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaqWaaeaafa qaaeqbiaaaaaaabaGaaGymaaqaaiaadIhadaWgaaWcbaGaaGymaaqa baaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGinaaqabaaa keaacaWG4bWaaSbaaSqaaiaaiwdaaeqaaaGcbaGaamiEamaaBaaale aacaaI2aaabeaaaOqaaiaadIhadaWgaaWcbaGaaG4naaqabaaakeaa caaIXaaabaGaeqiXdq3aaWbaaSqabeaadaqadaqaaiaadMgadaWgaa adbaGaaGymaaqabaaaliaawIcacaGLPaaaaaaakeaacaWGObWaa0ba aSqaaiaaigdaaeaadaqadaqaaiaadMgadaWgaaadbaGaaGymaaqaba aaliaawIcacaGLPaaaaaaakeaacaWGObWaa0baaSqaaiaaikdaaeaa daqadaqaaiaadMgadaWgaaadbaGaaGymaaqabaaaliaawIcacaGLPa aaaaaakeaacaWGObWaa0baaSqaaiaaiodaaeaadaqadaqaaiaadMga daWgaaadbaGaaGymaaqabaaaliaawIcacaGLPaaaaaaakeaacqaHep aDdaahaaWcbeqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaa aSGaayjkaiaawMcaaaaakiaadIgadaqhaaWcbaGaaGymaaqaamaabm aabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaaaa aOqaaiabes8a0naaCaaaleqabaWaaeWaaeaacaWGPbWaaSbaaWqaai aaigdaaeqaaaWccaGLOaGaayzkaaaaaOGaamiAamaaDaaaleaacaaI YaaabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWccaGLOa GaayzkaaaaaaGcbaGaeqiXdq3aaWbaaSqabeaadaqadaqaaiaadMga daWgaaadbaGaaGymaaqabaaaliaawIcacaGLPaaaaaGccaWGObWaa0 baaSqaaiaaiodaaeaadaqadaqaaiaadMgadaWgaaadbaGaaGymaaqa baaaliaawIcacaGLPaaaaaaakeaacaaIXaaabaGaeqiXdq3aaWbaaS qabeaadaqadaqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaliaawIca caGLPaaaaaaakeaacaWGObWaa0baaSqaaiaaigdaaeaadaqadaqaai aadMgadaWgaaadbaGaaGOmaaqabaaaliaawIcacaGLPaaaaaaakeaa caWGObWaa0baaSqaaiaaikdaaeaadaqadaqaaiaadMgadaWgaaadba GaaGOmaaqabaaaliaawIcacaGLPaaaaaaakeaacaWGObWaa0baaSqa aiaaiodaaeaadaqadaqaaiaadMgadaWgaaadbaGaaGOmaaqabaaali aawIcacaGLPaaaaaaakeaacqaHepaDdaahaaWcbeqaamaabmaabaGa amyAamaaBaaameaacaaIYaaabeaaaSGaayjkaiaawMcaaaaakiaadI gadaqhaaWcbaGaaGymaaqaamaabmaabaGaamyAamaaBaaameaacaaI YaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiabes8a0naaCaaaleqaba WaaeWaaeaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWccaGLOaGaayzk aaaaaOGaamiAamaaDaaaleaacaaIYaaabaWaaeWaaeaacaWGPbWaaS baaWqaaiaaikdaaeqaaaWccaGLOaGaayzkaaaaaaGcbaGaeqiXdq3a aWbaaSqabeaadaqadaqaaiaadMgadaWgaaadbaGaaGOmaaqabaaali aawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaaiodaaeaadaqadaqa aiaadMgadaWgaaadbaGaaGOmaaqabaaaliaawIcacaGLPaaaaaaake aacqWIMaYsaeaacqWIMaYsaeaacqWIMaYsaeaacqWIMaYsaeaacqWI MaYsaeaacqWIMaYscqWIMaYscqWIMaYsaeaacqWIMaYscqWIMaYscq WIMaYsaeaacqWIMaYscqWIMaYscqWIMaYsaeaacaaIXaaabaGaeqiX dq3aaWbaaSqabeaadaqadaqaaiaadMgadaWgaaadbaGaaG4naaqaba aaliaawIcacaGLPaaaaaaakeaacaWGObWaa0baaSqaaiaaigdaaeaa daqadaqaaiaadMgadaWgaaadbaGaaG4naaqabaaaliaawIcacaGLPa aaaaaakeaacaWGObWaa0baaSqaaiaaikdaaeaadaqadaqaaiaadMga daWgaaadbaGaaG4naaqabaaaliaawIcacaGLPaaaaaaakeaacaWGOb Waa0baaSqaaiaaiodaaeaadaqadaqaaiaadMgadaWgaaadbaGaaG4n aaqabaaaliaawIcacaGLPaaaaaaakeaacqaHepaDdaahaaWcbeqaam aabmaabaGaamyAamaaBaaameaacaaI3aaabeaaaSGaayjkaiaawMca aaaakiaadIgadaqhaaWcbaGaaGymaaqaamaabmaabaGaamyAamaaBa aameaacaaI3aaabeaaaSGaayjkaiaawMcaaaaaaOqaaiabes8a0naa CaaaleqabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaiEdaaeqaaaWcca GLOaGaayzkaaaaaOGaamiAamaaDaaaleaacaaIYaaabaWaaeWaaeaa caWGPbWaaSbaaWqaaiaaiEdaaeqaaaWccaGLOaGaayzkaaaaaaGcba GaeqiXdq3aaWbaaSqabeaadaqadaqaaiaadMgadaWgaaadbaGaaG4n aaqabaaaliaawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaaiodaae aadaqadaqaaiaadMgadaWgaaadbaGaaG4naaqabaaaliaawIcacaGL PaaaaaaaaaGccaGLhWUaayjcSdGaeyypa0JaaGimaiaacYcaaaa@FC88@  (12)

1< i 1 < i 2 << i 7 N, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymaiabgY da8iaadMgadaWgaaWcbaGaaGymaaqabaGccqGH8aapcaWGPbWaaSba aSqaaiaaikdaaeqaaOGaeyipaWJaeSOjGSKaeyipaWJaamyAamaaBa aaleaacaaI3aaabeaakiabgsMiJkaad6eacaGGSaaaaa@44E2@  где U i l τ i l , h 1 i l , h 2 i l , h 3 i l , τ i l h 1 i l , τ i l h 2 i l , τ i l h 3 i l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbWaaSbaaWqaaiaadYgaaeqaaaWcbeaakmaabmaabaGa eqiXdq3aaWbaaSqabeaadaqadaqaaiaadMgadaWgaaadbaGaamiBaa qabaaaliaawIcacaGLPaaaaaGccaGGSaGaamiAamaaDaaaleaacaaI XaaabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaadYgaaeqaaaWccaGLOa GaayzkaaaaaOGaaiilaiaadIgadaqhaaWcbaGaaGOmaaqaamaabmaa baGaamyAamaaBaaameaacaWGSbaabeaaaSGaayjkaiaawMcaaaaaki aacYcacaWGObWaa0baaSqaaiaaiodaaeaadaqadaqaaiaadMgadaWg aaadbaGaamiBaaqabaaaliaawIcacaGLPaaaaaGccaGGSaGaeqiXdq 3aaWbaaSqabeaadaqadaqaaiaadMgadaWgaaadbaGaamiBaaqabaaa liaawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaaigdaaeaadaqada qaaiaadMgadaWgaaadbaGaamiBaaqabaaaliaawIcacaGLPaaaaaGc caGGSaGaeqiXdq3aaWbaaSqabeaadaqadaqaaiaadMgadaWgaaadba GaamiBaaqabaaaliaawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaa ikdaaeaadaqadaqaaiaadMgadaWgaaadbaGaamiBaaqabaaaliaawI cacaGLPaaaaaGccaGGSaGaeqiXdq3aaWbaaSqabeaadaqadaqaaiaa dMgadaWgaaadbaGaamiBaaqabaaaliaawIcacaGLPaaaaaGccaWGOb Waa0baaSqaaiaaiodaaeaadaqadaqaaiaadMgadaWgaaadbaGaamiB aaqabaaaliaawIcacaGLPaaaaaaakiaawIcacaGLPaaaaaa@7659@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  affinely independent points from the set of points (2), l = 1, 2,…, 7 (seven such points exist due to Lemma 1), and x 1 , x 2 ,, x 7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGa aGOmaaqabaGccaGGSaGaeSOjGSKaaiilaiaadIhadaWgaaWcbaGaaG 4naaqabaaakiaawIcacaGLPaaaaaa@40A5@  are coordinates of any of the remaining (N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  7) points of the set (2). Equality (12) is equivalent to the equality

x 1 τ i 1 x 2 h 1 i 1 x 3 h 2 i 1 x 4 h 3 i 1 x 5 τ i 1 h 1 i 1 x 6 τ i 1 h 2 i 1 x 7 τ i 1 h 3 i 1 τ i 2 τ i 1 h 1 i 2 h 1 i 1 h 2 i 2 h 2 i 1 h 3 i 2 h 3 i 1 τ i 2 h 1 i 2 τ i 1 h 1 i 1 τ i 2 h 2 i 2 τ i 1 h 2 i 1 τ i 2 h 3 i 2 τ i 1 h 3 i 1 τ i 7 τ i 1 h 1 i 7 h 1 i 1 h 2 i 7 h 2 i 1 h 3 i 7 h 3 i 1 τ i 7 h 1 i 7 τ i 1 h 1 i 1 τ i 7 h 2 i 7 τ i 1 h 2 i 1 τ i 7 h 3 i 7 τ i 1 h 3 i 1 =0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaqWaaeaafa qaaeabhaaaaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsisl cqaHepaDdaahaaWcbeqaamaabmaabaGaamyAamaaBaaameaacaaIXa aabeaaaSGaayjkaiaawMcaaaaaaOqaaiaadIhadaWgaaWcbaGaaGOm aaqabaGccqGHsislcaWGObWaa0baaSqaaiaaigdaaeaadaqadaqaai aadMgadaWgaaadbaGaaGymaaqabaaaliaawIcacaGLPaaaaaaakeaa caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamiAamaaDaaale aacaaIYaaabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWc caGLOaGaayzkaaaaaaGcbaGaamiEamaaBaaaleaacaaI0aaabeaaki abgkHiTiaadIgadaqhaaWcbaGaaG4maaqaamaabmaabaGaamyAamaa BaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiaadIhada WgaaWcbaGaaGynaaqabaGccqGHsislcqaHepaDdaahaaWcbeqaamaa bmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaa aakiaadIgadaqhaaWcbaGaaGymaaqaamaabmaabaGaamyAamaaBaaa meaacaaIXaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiaadIhadaWgaa WcbaGaaGOnaaqabaGccqGHsislcqaHepaDdaahaaWcbeqaamaabmaa baGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaaaaki aadIgadaqhaaWcbaGaaGOmaaqaamaabmaabaGaamyAamaaBaaameaa caaIXaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiaadIhadaWgaaWcba GaaG4naaqabaGccqGHsislcqaHepaDdaahaaWcbeqaamaabmaabaGa amyAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaaaakiaadI gadaqhaaWcbaGaaG4maaqaamaabmaabaGaamyAamaaBaaameaacaaI XaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiabes8a0naaCaaaleqaba WaaeWaaeaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWccaGLOaGaayzk aaaaaOGaeyOeI0IaeqiXdq3aaWbaaSqabeaadaqadaqaaiaadMgada WgaaadbaGaaGymaaqabaaaliaawIcacaGLPaaaaaaakeaacaWGObWa a0baaSqaaiaaigdaaeaadaqadaqaaiaadMgadaWgaaadbaGaaGOmaa qabaaaliaawIcacaGLPaaaaaGccqGHsislcaWGObWaa0baaSqaaiaa igdaaeaadaqadaqaaiaadMgadaWgaaadbaGaaGymaaqabaaaliaawI cacaGLPaaaaaaakeaacaWGObWaa0baaSqaaiaaikdaaeaadaqadaqa aiaadMgadaWgaaadbaGaaGOmaaqabaaaliaawIcacaGLPaaaaaGccq GHsislcaWGObWaa0baaSqaaiaaikdaaeaadaqadaqaaiaadMgadaWg aaadbaGaaGymaaqabaaaliaawIcacaGLPaaaaaaakeaacaWGObWaa0 baaSqaaiaaiodaaeaadaqadaqaaiaadMgadaWgaaadbaGaaGOmaaqa baaaliaawIcacaGLPaaaaaGccqGHsislcaWGObWaa0baaSqaaiaaio daaeaadaqadaqaaiaadMgadaWgaaadbaGaaGymaaqabaaaliaawIca caGLPaaaaaaakeaacqaHepaDdaahaaWcbeqaamaabmaabaGaamyAam aaBaaameaacaaIYaaabeaaaSGaayjkaiaawMcaaaaakiaadIgadaqh aaWcbaGaaGymaaqaamaabmaabaGaamyAamaaBaaameaacaaIYaaabe aaaSGaayjkaiaawMcaaaaakiabgkHiTiabes8a0naaCaaaleqabaWa aeWaaeaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWccaGLOaGaayzkaa aaaOGaamiAamaaDaaaleaacaaIXaaabaWaaeWaaeaacaWGPbWaaSba aWqaaiaaigdaaeqaaaWccaGLOaGaayzkaaaaaaGcbaGaeqiXdq3aaW baaSqabeaadaqadaqaaiaadMgadaWgaaadbaGaaGOmaaqabaaaliaa wIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaaikdaaeaadaqadaqaai aadMgadaWgaaadbaGaaGOmaaqabaaaliaawIcacaGLPaaaaaGccqGH sislcqaHepaDdaahaaWcbeqaamaabmaabaGaamyAamaaBaaameaaca aIXaaabeaaaSGaayjkaiaawMcaaaaakiaadIgadaqhaaWcbaGaaGOm aaqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjkai aawMcaaaaaaOqaaiabes8a0naaCaaaleqabaWaaeWaaeaacaWGPbWa aSbaaWqaaiaaikdaaeqaaaWccaGLOaGaayzkaaaaaOGaamiAamaaDa aaleaacaaIZaaabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaikdaaeqa aaWccaGLOaGaayzkaaaaaOGaeyOeI0IaeqiXdq3aaWbaaSqabeaada qadaqaaiaadMgadaWgaaadbaGaaGymaaqabaaaliaawIcacaGLPaaa aaGccaWGObWaa0baaSqaaiaaiodaaeaadaqadaqaaiaadMgadaWgaa adbaGaaGymaaqabaaaliaawIcacaGLPaaaaaaakeaacqWIMaYscqWI MaYscqWIMaYscqWIMaYsaeaacqWIMaYscqWIMaYscqWIMaYscqWIMa YsaeaacqWIMaYscqWIMaYscqWIMaYscqWIMaYsaeaacqWIMaYscqWI MaYscqWIMaYscqWIMaYsaeaacqWIMaYscqWIMaYscqWIMaYscqWIMa YscqWIMaYscqWIMaYscqWIMaYsaeaacqWIMaYscqWIMaYscqWIMaYs cqWIMaYscqWIMaYscqWIMaYscqWIMaYsaeaacqWIMaYscqWIMaYscq WIMaYscqWIMaYscqWIMaYscqWIMaYscqWIMaYsaeaacqaHepaDdaah aaWcbeqaamaabmaabaGaamyAamaaBaaameaacaaI3aaabeaaaSGaay jkaiaawMcaaaaakiabgkHiTiabes8a0naaCaaaleqabaWaaeWaaeaa caWGPbWaaSbaaWqaaiaaigdaaeqaaaWccaGLOaGaayzkaaaaaaGcba GaamiAamaaDaaaleaacaaIXaaabaWaaeWaaeaacaWGPbWaaSbaaWqa aiaaiEdaaeqaaaWccaGLOaGaayzkaaaaaOGaeyOeI0IaamiAamaaDa aaleaacaaIXaaabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaigdaaeqa aaWccaGLOaGaayzkaaaaaaGcbaGaamiAamaaDaaaleaacaaIYaaaba WaaeWaaeaacaWGPbWaaSbaaWqaaiaaiEdaaeqaaaWccaGLOaGaayzk aaaaaOGaeyOeI0IaamiAamaaDaaaleaacaaIYaaabaWaaeWaaeaaca WGPbWaaSbaaWqaaiaaigdaaeqaaaWccaGLOaGaayzkaaaaaaGcbaGa amiAamaaDaaaleaacaaIZaaabaWaaeWaaeaacaWGPbWaaSbaaWqaai aaiEdaaeqaaaWccaGLOaGaayzkaaaaaOGaeyOeI0IaamiAamaaDaaa leaacaaIZaaabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaigdaaeqaaa WccaGLOaGaayzkaaaaaaGcbaGaeqiXdq3aaWbaaSqabeaadaqadaqa aiaadMgadaWgaaadbaGaaG4naaqabaaaliaawIcacaGLPaaaaaGcca WGObWaa0baaSqaaiaaigdaaeaadaqadaqaaiaadMgadaWgaaadbaGa aG4naaqabaaaliaawIcacaGLPaaaaaGccqGHsislcqaHepaDdaahaa WcbeqaamaabmaabaGaamyAamaaBaaameaacaaIXaaabeaaaSGaayjk aiaawMcaaaaakiaadIgadaqhaaWcbaGaaGymaaqaamaabmaabaGaam yAamaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaaaaaOqaaiab es8a0naaCaaaleqabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaiEdaae qaaaWccaGLOaGaayzkaaaaaOGaamiAamaaDaaaleaacaaIYaaabaWa aeWaaeaacaWGPbWaaSbaaWqaaiaaiEdaaeqaaaWccaGLOaGaayzkaa aaaOGaeyOeI0IaeqiXdq3aaWbaaSqabeaadaqadaqaaiaadMgadaWg aaadbaGaaGymaaqabaaaliaawIcacaGLPaaaaaGccaWGObWaa0baaS qaaiaaikdaaeaadaqadaqaaiaadMgadaWgaaadbaGaaGymaaqabaaa liaawIcacaGLPaaaaaaakeaacqaHepaDdaahaaWcbeqaamaabmaaba GaamyAamaaBaaameaacaaI3aaabeaaaSGaayjkaiaawMcaaaaakiaa dIgadaqhaaWcbaGaaG4maaqaamaabmaabaGaamyAamaaBaaameaaca aI3aaabeaaaSGaayjkaiaawMcaaaaakiabgkHiTiabes8a0naaCaaa leqabaWaaeWaaeaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWccaGLOa GaayzkaaaaaOGaamiAamaaDaaaleaacaaIZaaabaWaaeWaaeaacaWG PbWaaSbaaWqaaiaaigdaaeqaaaWccaGLOaGaayzkaaaaaaaaaOGaay 5bSlaawIa7aiabg2da9iaaicdacaGGSaaaaa@91B5@

which is the equation of a hyperplane passing through affinely independent points U i 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaaa@3900@ , U i 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaaa@3901@ , …, U i 7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbWaaSbaaWqaaiaaiEdaaeqaaaWcbeaaaaa@3906@ . From the above it follows that the coordinates of any of the N points of the set (2) satisfy this equation, and this contradicts the fact that the N points (2) do not lie in the same hyperplane.

Therefore, the system of vectors (11) is linearly independent, which means that the main matrix of each of the three systems of equations (10) is not degenerate. Consequently, each of these systems has a solution, and moreover, there is the only one, what was required to be proven.

We introduce the following notations:

A i = l=1 N B i l , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaakiabg2da9maaqahabaGaamOqamaaDaaaleaa caWGPbaabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaaqaaiaadY gacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOGaaiilaaaa@43DB@   C i = l=1 N τ l B i l , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGPbaabeaakiabg2da9maaqahabaGaaOiXdmaaCaaaleqa baWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaamOqamaaDaaale aacaWGPbaabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaaqaaiaa dYgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOGaaiilaaaa@47E1@   i=1,2,3; MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaai4oaaaa@3C60@   G j = l=1 N τ l h j (l) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGQbaabeaakiabg2da9maaqahabaGaaOiXdmaaCaaaleqa baWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaamiAamaaDaaale aacaWGQbaabaGaaiikaiaadYgacaGGPaaaaaqaaiaadYgacqGH9aqp caaIXaaabaGaamOtaaqdcqGHris5aOGaaiilaaaa@47DD@   H j = l=1 N h j (l) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGQbaabeaakiabg2da9maaqahabaGaamiAamaaDaaaleaa caWGQbaabaGaaiikaiaadYgacaGGPaaaaaqaaiaadYgacqGH9aqpca aIXaaabaGaamOtaaqdcqGHris5aOGaaiilaaaa@43DA@   L j = l=1 N τ l 2 h j (l) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGQbaabeaakiabg2da9maaqahabaWaaeWaaeaacaGIepWa aWbaaSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaaakiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGObWaa0baaSqaaiaa dQgaaeaacaGGOaGaamiBaiaacMcaaaaabaGaamiBaiabg2da9iaaig daaeaacaWGobaaniabggHiLdGccaGGSaaaaa@4A5E@   j=1,2,3; MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaiabg2 da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaai4oaaaa@3C61@

M kj = M jk = l=1 N h k (l) h j (l) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGRbGaamOAaaqabaGccqGH9aqpcaWGnbWaaSbaaSqaaiaa dQgacaWGRbaabeaakiabg2da9maaqahabaGaamiAamaaDaaaleaaca WGRbaabaGaaiikaiaadYgacaGGPaaaaOGaamiAamaaDaaaleaacaWG QbaabaGaaiikaiaadYgacaGGPaaaaaqaaiaadYgacqGH9aqpcaaIXa aabaGaamOtaaqdcqGHris5aOGaaiilaaaa@4D1A@   P kj = P jk = l=1 N τ l h k (l) h j (l) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGRbGaamOAaaqabaGccqGH9aqpcaWGqbWaaSbaaSqaaiaa dQgacaWGRbaabeaakiabg2da9maaqahabaGaaOiXdmaaCaaaleqaba WaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaamiAamaaDaaaleaa caWGRbaabaGaaiikaiaadYgacaGGPaaaaOGaamiAamaaDaaaleaaca WGQbaabaGaaiikaiaadYgacaGGPaaaaaqaaiaadYgacqGH9aqpcaaI XaaabaGaamOtaaqdcqGHris5aOGaaiilaaaa@5124@   Q kj = Q jk = l=1 N τ l 2 h k (l) h j (l) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGRbGaamOAaaqabaGccqGH9aqpcaWGrbWaaSbaaSqaaiaa dQgacaWGRbaabeaakiabg2da9maaqahabaWaaeWaaeaacaGIepWaaW baaSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaaakiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGObWaa0baaSqaaiaadU gaaeaacaGGOaGaamiBaiaacMcaaaGccaWGObWaa0baaSqaaiaadQga aeaacaGGOaGaamiBaiaacMcaaaaabaGaamiBaiabg2da9iaaigdaae aacaWGobaaniabggHiLdGccaGGSaaaaa@53A2@   k,j=1,2,3; MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4AaiaacY cacaWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGG 7aaaaa@3E01@

D ij = l=1 N B i l h j (l) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaaeWbqaaiaadkeadaqh aaWcbaGaamyAaaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaaki aadIgadaqhaaWcbaGaamOAaaqaaiaacIcacaWGSbGaaiykaaaaaeaa caWGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaacYcaaa a@492A@   F ij = l=1 N τ l B i l h j (l) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaaeWbqaaiaaks8adaah aaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaadkeada qhaaWcbaGaamyAaaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaa kiaadIgadaqhaaWcbaGaamOAaaqaaiaacIcacaWGSbGaaiykaaaaae aacaWGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaacYca aaa@4D30@   i,j=1,2,3; MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY cacaWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGG 7aaaaa@3DFF@   R= l=1 N τ l 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2 da9maaqahabaWaaeWaaeaacaGIepWaaWbaaSqabeaadaqadaqaaiaa dYgaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaabaGaamiBaiabg2da9iaaigdaaeaacaWGobaaniabggHi LdGccaGGSaaaaa@44E2@   T= l=1 N τ l . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 da9maaqahabaGaaOiXdmaaCaaaleqabaWaaeWaaeaacaWGSbaacaGL OaGaayzkaaaaaOGaaGjcVdWcbaGaamiBaiabg2da9iaaigdaaeaaca WGobaaniabggHiLdGccaGGUaaaaa@4410@

Then each of the three systems of equations (10) can be presented in the form

N b i +T θ i + k=1 3 H k s ik + k=1 3 G k t ik = A i , T b i +R θ i + k=1 3 G k s ik + k=1 3 L k t ik = C i , H j b i + G j θ i + k=1 3 M kj s ik + k=1 3 P kj t ik = D ij ,j=1,2,3, G j b i + L j θ i + k=1 3 P kj s ik + k=1 3 Q kj t ik = F ij ,j=1,2,3, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeabbaaaaeaacaWGobGaamOyamaaBaaaleaacaWGPbaabeaakiab gUcaRiaadsfacaaMc8UaaOiUdmaaBaaaleaacaWGPbaabeaakiabgU caRmaaqahabaGaamisamaaBaaaleaacaWGRbaabeaakiaadohadaWg aaWcbaGaamyAaiaadUgaaeqaaaqaaiaadUgacqGH9aqpcaaIXaaaba GaaG4maaqdcqGHris5aOGaey4kaSYaaabCaeaacaWGhbWaaSbaaSqa aiaadUgaaeqaaOGaamiDamaaBaaaleaacaWGPbGaam4Aaaqabaaaba Gaam4Aaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdGccaaMe8Ua eyypa0JaamyqamaaBaaaleaacaWGPbaabeaakiaacYcaaeaacaWGub GaamOyamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadkfacaaMc8Ua aOiUdmaaBaaaleaacaWGPbaabeaakiabgUcaRmaaqahabaGaam4ram aaBaaaleaacaWGRbaabeaakiaadohadaWgaaWcbaGaamyAaiaadUga aeqaaaqaaiaadUgacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aO Gaey4kaSYaaabCaeaacaWGmbWaaSbaaSqaaiaadUgaaeqaaOGaamiD amaaBaaaleaacaWGPbGaam4AaaqabaaabaGaam4Aaiabg2da9iaaig daaeaacaaIZaaaniabggHiLdGccqGH9aqpcaWGdbWaaSbaaSqaaiaa dMgaaeqaaOGaaiilaaqaaiaadIeadaWgaaWcbaGaamOAaaqabaGcca WGIbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaam4ramaaBaaaleaa caWGQbaabeaakiaakI7adaWgaaWcbaGaamyAaaqabaGccqGHRaWkda aeWbqaaiaad2eadaWgaaWcbaGaam4AaiaadQgaaeqaaOGaam4Camaa BaaaleaacaWGPbGaam4AaaqabaaabaGaam4Aaiabg2da9iaaigdaae aacaaIZaaaniabggHiLdGccqGHRaWkdaaeWbqaaiaadcfadaWgaaWc baGaam4AaiaadQgaaeqaaOGaamiDamaaBaaaleaacaWGPbGaam4Aaa qabaaabaGaam4Aaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdGc cqGH9aqpcaWGebWaaSbaaSqaaiaadMgacaWGQbaabeaakiaacYcaca aMf8UaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGa aiilaaqaaiaadEeadaWgaaWcbaGaamOAaaqabaGccaWGIbWaaSbaaS qaaiaadMgaaeqaaOGaey4kaSIaamitamaaBaaaleaacaWGQbaabeaa kiaakI7adaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaaeWbqaaiaadc fadaWgaaWcbaGaam4AaiaadQgaaeqaaOGaam4CamaaBaaaleaacaWG PbGaam4AaaqabaaabaGaam4Aaiabg2da9iaaigdaaeaacaaIZaaani abggHiLdGccqGHRaWkdaaeWbqaaiaadgfadaWgaaWcbaGaam4Aaiaa dQgaaeqaaOGaamiDamaaBaaaleaacaWGPbGaam4AaaqabaaabaGaam 4Aaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdGccqGH9aqpcaWG gbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaacYcacaaMf8UaamOAai abg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaaaaaiaa wUhaaaaa@DC72@  (13)

i = 1, 2, 3. In each of the three systems (13) we express the first two equations bi and θi via si1, si2, si3, ti1, ti2, ti3, then we will exclude bi and θi out of the remaining six equations of the system and multiply both parts of each of the last six equations by (T2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  NR):

b i = T 2 NR 1 T C i R A i + k=1 3 R H k T G k s ik + k=1 3 R G k T L k t ik , θ i = T 2 NR 1 T A i N C i + k=1 3 N G k T H k s ik + k=1 3 N L k T G k t ik , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeGabaaabaGaamOyamaaBaaaleaacaWGPbaabeaakiabg2da9maa bmaabaGaamivamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaad6eaca WGsbaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOWa amWaaeaacaWGubGaam4qamaaBaaaleaacaWGPbaabeaakiabgkHiTi aadkfacaWGbbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaabCaeaa daqadaqaaiaadkfacaWGibWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0 IaamivaiaadEeadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaa caWGZbWaaSbaaSqaaiaadMgacaWGRbaabeaaaeaacaWGRbGaeyypa0 JaaGymaaqaaiaaiodaa0GaeyyeIuoakiabgUcaRmaaqahabaWaaeWa aeaacaWGsbGaam4ramaaBaaaleaacaWGRbaabeaakiabgkHiTiaads facaWGmbWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaamiD amaaBaaaleaacaWGPbGaam4AaaqabaaabaGaam4Aaiabg2da9iaaig daaeaacaaIZaaaniabggHiLdaakiaawUfacaGLDbaacaGGSaaabaGa aOiUdmaaBaaaleaacaWGPbaabeaakiabg2da9maabmaabaGaamivam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaad6eacaWGsbaacaGLOaGa ayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaamWaaeaacaWGub GaamyqamaaBaaaleaacaWGPbaabeaakiabgkHiTiaad6eacaWGdbWa aSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaabCaeaadaqadaqaaiaad6 eacaWGhbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamivaiaadIea daWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaWGZbWaaSbaaS qaaiaadMgacaWGRbaabeaaaeaacaWGRbGaeyypa0JaaGymaaqaaiaa iodaa0GaeyyeIuoakiabgUcaRmaaqahabaWaaeWaaeaacaWGobGaam itamaaBaaaleaacaWGRbaabeaakiabgkHiTiaadsfacaWGhbWaaSba aSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaamiDamaaBaaaleaaca WGPbGaam4AaaqabaaabaGaam4Aaiabg2da9iaaigdaaeaacaaIZaaa niabggHiLdaakiaawUfacaGLDbaacaGGSaaaaaGaay5Eaaaaaa@A5F7@  (14)

k=1 3 α j,k s ik + k=1 3 β j,k t ik = γ j,i ,j=1,2,,6, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabCaeaacq aHXoqydaWgaaWcbaGaamOAaiaacYcacaWGRbaabeaakiaadohadaWg aaWcbaGaamyAaiaadUgaaeqaaaqaaiaadUgacqGH9aqpcaaIXaaaba GaaG4maaqdcqGHris5aOGaey4kaSYaaabCaeaacqaHYoGydaWgaaWc baGaamOAaiaacYcacaWGRbaabeaakiaadshadaWgaaWcbaGaamyAai aadUgaaeqaaaqaaiaadUgacqGH9aqpcaaIXaaabaGaaG4maaqdcqGH ris5aOGaeyypa0Jaeq4SdC2aaSbaaSqaaiaadQgacaGGSaGaamyAaa qabaGccaGGSaGaaGzbVlaadQgacqGH9aqpcaaIXaGaaiilaiaaikda caGGSaGaeSOjGSKaaiilaiaaiAdacaGGSaaaaa@60E4@  (15)

i = 1, 2, 3, where the coefficients of the unknowns and the free terms are determined by the equalities.

α j,k = T 2 NR M kj + H j R H k T G k + G j N G k T H k , α j+3,k = T 2 NR P kj + G j R H k T G k + L j N G k T H k , β j,k = T 2 NR P kj + H j R G k T L k + G j N L k T G k , β j+3,k = T 2 NR Q kj + G j R G k T L k + L j N L k T G k , γ j,i = T 2 NR D ij + H j R A i T C i + G j N C i T A i , γ j+3,i = T 2 NR F ij + G j R A i T C i + L j N C i T A i , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabyqaaa aabaGaeqySde2aaSbaaSqaaiaadQgacaGGSaGaam4AaaqabaGccqGH 9aqpdaqadaqaaiaadsfadaahaaWcbeqaaiaaikdaaaGccqGHsislca WGobGaamOuaaGaayjkaiaawMcaaiaad2eadaWgaaWcbaGaam4Aaiaa dQgaaeqaaOGaey4kaSIaamisamaaBaaaleaacaWGQbaabeaakmaabm aabaGaamOuaiaadIeadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG ubGaam4ramaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabgU caRiaadEeadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaad6eacaWG hbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamivaiaadIeadaWgaa WcbaGaam4AaaqabaaakiaawIcacaGLPaaacaGGSaaabaGaeqySde2a aSbaaSqaaiaadQgacqGHRaWkcaaIZaGaaiilaiaadUgaaeqaaOGaey ypa0ZaaeWaaeaacaWGubWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ia amOtaiaadkfaaiaawIcacaGLPaaacaWGqbWaaSbaaSqaaiaadUgaca WGQbaabeaakiabgUcaRiaadEeadaWgaaWcbaGaamOAaaqabaGcdaqa daqaaiaadkfacaWGibWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0Iaam ivaiaadEeadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacqGH RaWkcaWGmbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGobGaam 4ramaaBaaaleaacaWGRbaabeaakiabgkHiTiaadsfacaWGibWaaSba aSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaiilaaqaaiabek7aIn aaBaaaleaacaWGQbGaaiilaiaadUgaaeqaaOGaeyypa0ZaaeWaaeaa caWGubWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamOtaiaadkfaai aawIcacaGLPaaacaWGqbWaaSbaaSqaaiaadUgacaWGQbaabeaakiab gUcaRiaadIeadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadkfaca WGhbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamivaiaadYeadaWg aaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacqGHRaWkcaWGhbWaaS baaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGobGaamitamaaBaaaleaa caWGRbaabeaakiabgkHiTiaadsfacaWGhbWaaSbaaSqaaiaadUgaae qaaaGccaGLOaGaayzkaaGaaiilaaqaaiabek7aInaaBaaaleaacaWG QbGaey4kaSIaaG4maiaacYcacaWGRbaabeaakiabg2da9maabmaaba GaamivamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaad6eacaWGsbaa caGLOaGaayzkaaGaamyuamaaBaaaleaacaWGRbGaamOAaaqabaGccq GHRaWkcaWGhbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGsbGa am4ramaaBaaaleaacaWGRbaabeaakiabgkHiTiaadsfacaWGmbWaaS baaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamitamaa BaaaleaacaWGQbaabeaakmaabmaabaGaamOtaiaadYeadaWgaaWcba Gaam4AaaqabaGccqGHsislcaWGubGaam4ramaaBaaaleaacaWGRbaa beaaaOGaayjkaiaawMcaaiaacYcaaeaacqaHZoWzdaWgaaWcbaGaam OAaiaacYcacaWGPbaabeaakiabg2da9maabmaabaGaamivamaaCaaa leqabaGaaGOmaaaakiabgkHiTiaad6eacaWGsbaacaGLOaGaayzkaa GaamiramaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkcaWGibWa aSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGsbGaamyqamaaBaaale aacaWGPbaabeaakiabgkHiTiaadsfacaWGdbWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaGaey4kaSIaam4ramaaBaaaleaacaWGQb aabeaakmaabmaabaGaamOtaiaadoeadaWgaaWcbaGaamyAaaqabaGc cqGHsislcaWGubGaamyqamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaaiaacYcaaeaacqaHZoWzdaWgaaWcbaGaamOAaiabgUcaRiaa iodacaGGSaGaamyAaaqabaGccqGH9aqpdaqadaqaaiaadsfadaahaa WcbeqaaiaaikdaaaGccqGHsislcaWGobGaamOuaaGaayjkaiaawMca aiaadAeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIaam4ram aaBaaaleaacaWGQbaabeaakmaabmaabaGaamOuaiaadgeadaWgaaWc baGaamyAaaqabaGccqGHsislcaWGubGaam4qamaaBaaaleaacaWGPb aabeaaaOGaayjkaiaawMcaaiabgUcaRiaadYeadaWgaaWcbaGaamOA aaqabaGcdaqadaqaaiaad6eacaWGdbWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0IaamivaiaadgeadaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaacaGGSaaaaaaa@16D4@

i, j, k = 1, 2, 3.

We could note that at least one of the third-order minors located in the first three columns of the main matrix

α 11 α 12 α 13 β 11 β 12 β 13 α 21 α 22 α 23 β 21 β 22 β 23 α 61 α 62 α 63 β 61 β 62 β 63 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qaaeabgaaaaaqaaiabeg7aHnaaBaaaleaacaaIXaGaaGymaaqabaaa keaacqaHXoqydaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeqySde 2aaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiabek7aInaaBaaaleaa caaIXaGaaGymaaqabaaakeaacqaHYoGydaWgaaWcbaGaaGymaiaaik daaeqaaaGcbaGaeqOSdi2aaSbaaSqaaiaaigdacaaIZaaabeaaaOqa aiabeg7aHnaaBaaaleaacaaIYaGaaGymaaqabaaakeaacqaHXoqyda WgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeqySde2aaSbaaSqaaiaa ikdacaaIZaaabeaaaOqaaiabek7aInaaBaaaleaacaaIYaGaaGymaa qabaaakeaacqaHYoGydaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGa eqOSdi2aaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiablAcilbqaai ablAcilbqaaiablAcilbqaaiablAcilbqaaiablAcilbqaaiablAci lbqaaiabeg7aHnaaBaaaleaacaaI2aGaaGymaaqabaaakeaacqaHXo qydaWgaaWcbaGaaGOnaiaaikdaaeqaaaGcbaGaeqySde2aaSbaaSqa aiaaiAdacaaIZaaabeaaaOqaaiabek7aInaaBaaaleaacaaI2aGaaG ymaaqabaaakeaacqaHYoGydaWgaaWcbaGaaGOnaiaaikdaaeqaaaGc baGaeqOSdi2aaSbaaSqaaiaaiAdacaaIZaaabeaaaaaakiaawIcaca GLPaaaaaa@7A25@  (16)

of each of the three systems of equations (15) is not equal to zero. Indeed, by virtue of Laplace's theorem, the determinant of matrix (16) is equal to the sum of the products of all the minors of the third order, located in the first three columns of this matrix, by their algebraic complements, and if all the indicated minors were equal to zero, then the determinant of matrix (16) would also be equal to zero, which would contradict the necessary and sufficient condition for the existence of a unique solution to each of the three systems of equations (15), and therefore to each of the three systems of equations (10).

Let j1, j2, j3 (1 ≤ j1 < j2 < j3 ≤ 6) be the numbers of the rows of the matrix (16) at the intersection of which with the first three columns of this matrix a non-zero minor of the third order is located. We could swap the equations of each of the three systems (15) so that the equations with numbers j1, j2, j3 are the first, second and third, respectively. The numbers of the equations that ended up in fourth, fifth and sixth places will be designated as j4, j5, j6, respectively. We could also introduce the following notations:

Ω 11 = α j n ,k n,k=1 3 , Ω 12 = β j n ,k n,k=1 3 , Ω 21 = α j n+3 ,k n,k=1 3 , Ω 22 = β j n+3 ,k n,k=1 3 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaaigdacaaIXaaabeaakiabg2da9maabmaabaGaeqySde2a aSbaaSqaaiaadQgadaWgaaadbaGaamOBaaqabaWccaGGSaGaam4Aaa qabaaakiaawIcacaGLPaaadaqhaaWcbaGaamOBaiaacYcacaWGRbGa eyypa0JaaGymaaqaaiaaiodaaaGccaGGSaGaaGzbVlabfM6axnaaBa aaleaacaaIXaGaaGOmaaqabaGccqGH9aqpdaqadaqaaiabek7aInaa BaaaleaacaWGQbWaaSbaaWqaaiaad6gaaeqaaSGaaiilaiaadUgaae qaaaGccaGLOaGaayzkaaWaa0baaSqaaiaad6gacaGGSaGaam4Aaiab g2da9iaaigdaaeaacaaIZaaaaOGaaiilaiaaywW7cqqHPoWvdaWgaa WcbaGaaGOmaiaaigdaaeqaaOGaeyypa0ZaaeWaaeaacqaHXoqydaWg aaWcbaGaamOAamaaBaaameaacaWGUbGaey4kaSIaaG4maaqabaWcca GGSaGaam4AaaqabaaakiaawIcacaGLPaaadaqhaaWcbaGaamOBaiaa cYcacaWGRbGaeyypa0JaaGymaaqaaiaaiodaaaGccaGGSaGaaGzbVl abfM6axnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpdaqadaqa aiabek7aInaaBaaaleaacaWGQbWaaSbaaWqaaiaad6gacqGHRaWkca aIZaaabeaaliaacYcacaWGRbaabeaaaOGaayjkaiaawMcaamaaDaaa leaacaWGUbGaaiilaiaadUgacqGH9aqpcaaIXaaabaGaaG4maaaaki aacYcaaaa@8349@

Γ 1i = γ j 1 ,i , γ j 2 ,i , γ j 3 ,i T , Γ 2i = γ j 4 ,i , γ j 5 ,i , γ j 6 ,i T , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbeGaa83Kdm aaBaaaleaacaaIXaGaamyAaaqabaGccqGH9aqpdaqadaqaaiabeo7a NnaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaiilaiaadM gaaeqaaOGaaiilaiabeo7aNnaaBaaaleaacaWGQbWaaSbaaWqaaiaa ikdaaeqaaSGaaiilaiaadMgaaeqaaOGaaiilaiabeo7aNnaaBaaale aacaWGQbWaaSbaaWqaaiaaiodaaeqaaSGaaiilaiaadMgaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGaaiilaiaaywW7ca WFtoWaaSbaaSqaaiaaikdacaWGPbaabeaakiabg2da9maabmaabaGa eq4SdC2aaSbaaSqaaiaadQgadaWgaaadbaGaaGinaaqabaWccaGGSa GaamyAaaqabaGccaGGSaGaeq4SdC2aaSbaaSqaaiaadQgadaWgaaad baGaaGynaaqabaWccaGGSaGaamyAaaqabaGccaGGSaGaeq4SdC2aaS baaSqaaiaadQgadaWgaaadbaGaaGOnaaqabaWccaGGSaGaamyAaaqa baaakiaawIcacaGLPaaadaahaaWcbeqaaiaadsfaaaGccaGGSaaaaa@6939@  

i = 1, 2, 3. Then the extended matrix of the system obtained from the i-th system (15) as a result of the above rearrangement of equations will take the form

Ω 11 Ω 12 Ω 21 Ω 22 Γ 1i Γ 2i , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada abcaqaauaabaqaciaaaeaacqqHPoWvdaWgaaWcbaGaaGymaiaaigda aeqaaaGcbaGaeuyQdC1aaSbaaSqaaiaaigdacaaIYaaabeaakiaays W7aeaacqqHPoWvdaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaeuyQ dC1aaSbaaSqaaiaaikdacaaIYaaabeaaaaaakiaawIa7auaabaqace aaaeaaieqacaWFtoWaaSbaaSqaaiaaigdacaWGPbaabeaaaOqaaiaa =n5adaWgaaWcbaGaaGOmaiaadMgaaeqaaaaaaOGaayjkaiaawMcaai aacYcaaaa@4E73@  (17)

i = 1, 2, 3. In this case, Ω11 is a non-singular matrix due to its definition and the conditions for choosing the numbers j1, j2, j3 of the rows of matrix (16). From the second row of the i-th block matrix (17) we subtract its first row, multiplied from the left by Ω 21 Ω 11 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaaikdacaaIXaaabeaakiabfM6axnaaDaaaleaacaaIXaGa aGymaaqaaiabgkHiTiaaigdaaaaaaa@3E2D@ :

Ω 11 Ω 12 O Ω 22 Ω 21 Ω 11 1 Ω 12 Γ 1i Γ 2i Ω 21 Ω 11 1 Γ 1i , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada abcaqaauaabaqaciaaaeaacqqHPoWvdaWgaaWcbaGaaGymaiaaigda aeqaaaGcbaGaeuyQdC1aaSbaaSqaaiaaigdacaaIYaaabeaakiaays W7aeaacaWGpbaabaGaeuyQdC1aaSbaaSqaaiaaikdacaaIYaaabeaa kiabgkHiTiabfM6axnaaBaaaleaacaaIYaGaaGymaaqabaGccqqHPo WvdaqhaaWcbaGaaGymaiaaigdaaeaacqGHsislcaaIXaaaaOGaeuyQ dC1aaSbaaSqaaiaaigdacaaIYaaabeaaaaaakiaawIa7auaabaqace aaaeaaieqacaWFtoWaaSbaaSqaaiaaigdacaWGPbaabeaaaOqaaiaa =n5adaWgaaWcbaGaaGOmaiaadMgaaeqaaOGaeyOeI0IaeuyQdC1aaS baaSqaaiaaikdacaaIXaaabeaakiabfM6axnaaDaaaleaacaaIXaGa aGymaaqaaiabgkHiTiaaigdaaaGccaWFtoWaaSbaaSqaaiaaigdaca WGPbaabeaaaaaakiaawIcacaGLPaaacaGGSaaaaa@6453@  (18)

i = 1, 2, 3, where O where O is a zero square matrix of the third order. The resulting matrix (18) is equivalent to matrix (17) [21]. For each i = 1, 2, 3, the last three equations of the system corresponding to the augmented matrix (18) form a system whose matrix notation looks as follows:

Ω 22 Ω 21 Ω 11 1 Ω 12 Λ i = Γ 2i Ω 21 Ω 11 1 Γ 1i , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq qHPoWvdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyOeI0IaeuyQdC1a aSbaaSqaaiaaikdacaaIXaaabeaakiabfM6axnaaDaaaleaacaaIXa GaaGymaaqaaiabgkHiTiaaigdaaaGccqqHPoWvdaWgaaWcbaGaaGym aiaaikdaaeqaaaGccaGLOaGaayzkaaacbeGaa83MdmaaBaaaleaaca WGPbaabeaakiabg2da9iaa=n5adaWgaaWcbaGaaGOmaiaadMgaaeqa aOGaeyOeI0IaeuyQdC1aaSbaaSqaaiaaikdacaaIXaaabeaakiabfM 6axnaaDaaaleaacaaIXaGaaGymaaqaaiabgkHiTiaaigdaaaGccaWF toWaaSbaaSqaaiaaigdacaWGPbaabeaakiaacYcaaaa@5A1F@  (19)

где Λi = (ti1, ti2, ti3)T, i = 1, 2, 3.

We have to underline that the main matrix Ω 22 Ω 21 Ω 11 1 Ω 12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq qHPoWvdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyOeI0IaeuyQdC1a aSbaaSqaaiaaikdacaaIXaaabeaakiabfM6axnaaDaaaleaacaaIXa GaaGymaaqaaiabgkHiTiaaigdaaaGccqqHPoWvdaWgaaWcbaGaaGym aiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@4724@  each of the three systems of equations (19) is not degenerate, since otherwise the necessary and sufficient condition for the existence of a unique solution to each of the three systems (19), and therefore to each of the three systems (15), and, consequently, to each of the three systems (10), would be violated.

The values of the unknowns ti1, ti2, ti3 for each i = 1, 2, 3 are found from the system of equations (19) using Cramer's formulae

t ik = Δ i,k Δ ,i,k=1,2,3, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGPbGaam4AaaqabaGccqGH9aqpdaWcaaqaaiabfs5aenaa BaaaleaacaWGPbGaaiilaiaadUgaaeqaaaGcbaGaeuiLdqeaaiaacY cacaaMf8UaamyAaiaacYcacaWGRbGaeyypa0JaaGymaiaacYcacaaI YaGaaiilaiaaiodacaGGSaaaaa@49E2@  (20)

where

Δ=det Ω 22 Ω 21 Ω 11 1 Ω 12 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaey ypa0JaciizaiaacwgacaGG0bWaaeWaaeaacqqHPoWvdaWgaaWcbaGa aGOmaiaaikdaaeqaaOGaeyOeI0IaeuyQdC1aaSbaaSqaaiaaikdaca aIXaaabeaakiabfM6axnaaDaaaleaacaaIXaGaaGymaaqaaiabgkHi TiaaigdaaaGccqqHPoWvdaWgaaWcbaGaaGymaiaaikdaaeqaaaGcca GLOaGaayzkaaGaaiilaaaa@4D0B@

and each of the determinants Δi,k is obtained from the determinant Δ by replacing its k-th column with the column of free terms

Γ 2i Ω 21 Ω 11 1 Γ 1i , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbeGaa83Kdm aaBaaaleaacaaIYaGaamyAaaqabaGccqGHsislcqqHPoWvdaWgaaWc baGaaGOmaiaaigdaaeqaaOGaeuyQdC1aa0baaSqaaiaaigdacaaIXa aabaGaeyOeI0IaaGymaaaakiaa=n5adaWgaaWcbaGaaGymaiaadMga aeqaaOGaaiilaaaa@45CB@

i, k = 1, 2, 3.

Substituting for each i = 1, 2, 3 into the first three equations of the system corresponding to the extended matrix (18), instead of ti1, ti2, ti3 the values of these unknowns calculated by formulae (20), we obtain a system of three equations for three unknowns si1, si2, si3, the matrix notation of which has the form

Ω 11 Σ i = Γ 1i Ω 12 Λ ˜ i , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaaigdacaaIXaaabeaaieqakiaa=n6adaWgaaWcbaGaamyA aaqabaGccqGH9aqpcaWFtoWaaSbaaSqaaiaaigdacaWGPbaabeaaki abgkHiTiabfM6axnaaBaaaleaacaaIXaGaaGOmaaqabaGcceWFBoGb aGaadaWgaaWcbaGaamyAaaqabaGccaGGSaaaaa@46CE@  (21)

where Λ ˜ i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbeGab83Mdy aaiaWaaSbaaSqaaiaadMgaaeqaaaaa@386B@  is column-vector of solutions of the system of equations (19), Σi = (si1, si2, si3)T, i = 1, 2, 3. The values of the unknowns si1, si2, si3 for each i = 1, 2, 3 are found from the system of equations (21) using Cramer's formulae.

s ik = Δ ˜ i,k Δ ˜ ,i,k=1,2,3, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGPbGaam4AaaqabaGccqGH9aqpdaWcaaqaaiqbfs5aezaa iaWaaSbaaSqaaiaadMgacaGGSaGaam4AaaqabaaakeaacuqHuoarga acaaaacaGGSaGaaGzbVlaadMgacaGGSaGaam4Aaiabg2da9iaaigda caGGSaGaaGOmaiaacYcacaaIZaGaaiilaaaa@49FF@

where

Δ ˜ =det Ω 11 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacqGH9aqpciGGKbGaaiyzaiaacshadaqadaqaaiabfM6axnaaBaaa leaacaaIXaGaaGymaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@40D2@

а каждый из определителей Δ ˜ i,k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aadaWgaaWcbaGaamyAaiaacYcacaWGRbaabeaaaaa@3A48@  получаем из определителя Δ ˜ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aaaaa@378E@  заменой его k-го столбца на столбец свободных членов

Γ 1i Ω 12 Λ ˜ i , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaacbeGaa83Kdm aaBaaaleaacaaIXaGaamyAaaqabaGccqGHsislcqqHPoWvdaWgaaWc baGaaGymaiaaikdaaeqaaOGab83MdyaaiaWaaSbaaSqaaiaadMgaae qaaOGaaiilaaaa@4043@  

i, k = 1, 2, 3.

Having found the values of the unknowns ti1, ti2, ti3, si1, si2, si3, we find the values of the unknowns bi and θi using formulas (14), i = 1, 2, 3.

We prove that the found stationary point of the function Φ, defined by equality (8), that is the solution of the system of equations (9), obtained in the manner described above, provides the minimum of the function Φ. We derive the expression for the second differential d 2Φ of the function Φ:

d 2 Φ= i=1 3 j=1 3 k=1 3 m=1 3 2 Φ s ij s km d s ij d s km +2 2 Φ s ij t km d s ij d t km + 2 Φ t ij t km d t ij d t km  + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamizamaaCa aaleqabaGaaGOmaaaakiabfA6agjabg2da9maaqahabaWaaabCaeaa daaeWbqaamaaqahabaWaamWaaeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiabfA6agbqaaiabgkGi2kaadohadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaeyOaIyRaam4CamaaBaaaleaacaWGRbGaam yBaaqabaaaaOGaamizaiaadohadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaamizaiaadohadaWgaaWcbaGaam4Aaiaad2gaaeqaaOGaey4kaS IaaGOmamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeuOP dyeabaGaeyOaIyRaam4CamaaBaaaleaacaWGPbGaamOAaaqabaGccq GHciITcaWG0bWaaSbaaSqaaiaadUgacaWGTbaabeaaaaGccaWGKbGa am4CamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGKbGaamiDamaaBa aaleaacaWGRbGaamyBaaqabaGccqGHRaWkdaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiabfA6agbqaaiabgkGi2kaadshadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyOaIyRaamiDamaaBaaaleaacaWG RbGaamyBaaqabaaaaOGaamizaiaadshadaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaamizaiaadshadaWgaaWcbaGaam4Aaiaad2gaaeqaaaGc caGLBbGaayzxaaGaaGzaVdWcbaGaamyBaiabg2da9iaaigdaaeaaca aIZaaaniabggHiLdaaleaacaWGRbGaeyypa0JaaGymaaqaaiaaioda a0GaeyyeIuoaaSqaaiaadQgacqGH9aqpcaaIXaaabaGaaG4maaqdcq GHris5aaWcbaGaamyAaiabg2da9iaaigdaaeaacaaIZaaaniabggHi LdGccaaMb8UaaGzaVlaabccacqGHRaWkaaa@99FE@

+  i=1 3 m=1 3 2 2 Φ b i θ m d b i d θ m + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaey4kaSIaae iiamaaqahabaWaaabCaeaadaWabaqaaiaaikdadaWcaaqaaiabgkGi 2oaaCaaaleqabaGaaGOmaaaakiabfA6agbqaaiabgkGi2kaadkgada WgaaWcbaGaamyAaaqabaGccqGHciITcaGI4oWaaSbaaSqaaiaad2ga aeqaaaaakiaadsgacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamizai aakI7adaWgaaWcbaGaamyBaaqabaGccqGHRaWkaiaawUfaaaWcbaGa amyBaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdaaleaacaWGPb Gaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIuoaaaa@570C@ 2 Φ b i b m d b i d b m + 2 Φ θ i θ m d θ i d θ m + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaamGaaeaada WcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabfA6agbqaaiab gkGi2kaadkgadaWgaaWcbaGaamyAaaqabaGccqGHciITcaWGIbWaaS baaSqaaiaad2gaaeqaaaaakiaadsgacaWGIbWaaSbaaSqaaiaadMga aeqaaOGaamizaiaadkgadaWgaaWcbaGaamyBaaqabaGccaaMb8Uaey 4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqqHMoGr aeaacqGHciITcaGI4oWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaaO iUdmaaBaaaleaacaWGTbaabeaaaaGccaWGKbGaaOiUdmaaBaaaleaa caWGPbaabeaakiaadsgacaGI4oWaaSbaaSqaaiaad2gaaeqaaaGcca GLDbaacqGHRaWkaaa@5D4F@

+ 2 i=1 3 j=1 3 k=1 3 2 Φ s ij b k d s ij d b k + 2 Φ s ij θ k d s ij d θ k + 2 Φ t ij b k d t ij d b k + 2 Φ t ij θ k d t ij d θ k = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaey4kaSIaae iiaiaaygW7caaIYaWaaabCaeaadaaeWbqaamaaqahabaWaamWaaeaa daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabfA6agbqaai abgkGi2kaadohadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOaIyRa amOyamaaBaaaleaacaWGRbaabeaaaaGccaWGKbGaam4CamaaBaaale aacaWGPbGaamOAaaqabaGccaWGKbGaamOyamaaBaaaleaacaWGRbaa beaakiaaygW7cqGHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG OmaaaakiabfA6agbqaaiabgkGi2kaadohadaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaeyOaIyRaaOiUdmaaBaaaleaacaWGRbaabeaaaaGcca WGKbGaam4CamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGKbGaaOiU dmaaBaaaleaacaWGRbaabeaakiaaygW7cqGHRaWkdaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGOmaaaakiabfA6agbqaaiabgkGi2kaadsha daWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOaIyRaamOyamaaBaaale aacaWGRbaabeaaaaGccaWGKbGaamiDamaaBaaaleaacaWGPbGaamOA aaqabaGccaWGKbGaamOyamaaBaaaleaacaWGRbaabeaakiaaygW7cq GHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabfA6a gbqaaiabgkGi2kaadshadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey OaIyRaaOiUdmaaBaaaleaacaWGRbaabeaaaaGccaWGKbGaamiDamaa BaaaleaacaWGPbGaamOAaaqabaGccaWGKbGaaOiUdmaaBaaaleaaca WGRbaabeaaaOGaay5waiaaw2faaaWcbaGaam4Aaiabg2da9iaaigda aeaacaaIZaaaniabggHiLdaaleaacaWGQbGaeyypa0JaaGymaaqaai aaiodaa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaaG4m aaqdcqGHris5aOGaeyypa0daaa@A17F@

=2 i=1 3 j=1 3 m=1 3 l=1 N h j l h m l Δ s ij Δ s im +2 τ l h j l h m l Δ s ij Δ t im + τ l 2 h j l h m l Δ t ij Δ t im + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0JaaG OmamaaceaabaWaaabCaeaadaaeWbqaamaaqahabaWaaabCaeaadaWa daqaaiaadIgadaqhaaWcbaGaamOAaaqaamaabmaabaGaamiBaaGaay jkaiaawMcaaaaakiaadIgadaqhaaWcbaGaamyBaaqaamaabmaabaGa amiBaaGaayjkaiaawMcaaaaakiabfs5aejaadohadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeuiLdqKaam4CamaaBaaaleaacaWGPbGaamyB aaqabaGccqGHRaWkcaaIYaGaeqiXdq3aaWbaaSqabeaadaqadaqaai aadYgaaiaawIcacaGLPaaaaaGccaWGObWaa0baaSqaaiaadQgaaeaa daqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaWGObWaa0baaSqaai aad2gaaeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccqqHuoar caWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabfs5aejaadshada WgaaWcbaGaamyAaiaad2gaaeqaaOGaey4kaSYaaeWaaeaacaaMi8Ua eqiXdq3aaWbaaSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGObWaa0ba aSqaaiaadQgaaeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGcca WGObWaa0baaSqaaiaad2gaaeaadaqadaqaaiaadYgaaiaawIcacaGL PaaaaaGccqqHuoarcaWG0bWaaSbaaSqaaiaadMgacaWGQbaabeaaki abfs5aejaadshadaWgaaWcbaGaamyAaiaad2gaaeqaaaGccaGLBbGa ayzxaaaaleaacaWGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIu oaaSqaaiaad2gacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aOGa ey4kaScaleaacaWGQbGaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIu oaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aaGc caGL7baaaaa@9835@

i=1 3 l=1 N 2 τ l Δ b i Δ θ i + Δ b i 2 + τ l 2 Δ θ i 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaamGaaeaada aeWbqaamaaqahabaWaamqaaeaacaaIYaGaeqiXdq3aaWbaaSqabeaa daqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccqqHuoarcaaMi8Uaam OyamaaBaaaleaacaWGPbaabeaakiabfs5aejaayIW7cqaH4oqCdaWg aaWcbaGaamyAaaqabaGccqGHRaWkaiaawUfaaaWcbaGaamiBaiabg2 da9iaaigdaaeaacaWGobaaniabggHiLdaaleaacaWGPbGaeyypa0Ja aGymaaqaaiaaiodaa0GaeyyeIuoakmaabmaabaGaeuiLdqKaaGjcVl aadkgadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaayIW7cqaHepaDdaahaa WcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeuiLdqKaaGjcVl abeI7aXnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaaaOGaayzxaaGaey4kaScaaa@6E89@

+2 i=1 3 j=1 3 l=1 N h j l Δ s ij Δ b i + τ l h j l Δ s ij Δ θ i + τ l h j l Δ t ij Δ b i + τ l 2 h j l Δ t ij Δ θ i = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaiGaaeaacq GHRaWkcaaIYaWaaabCaeaadaaeWbqaamaaqahabaWaamWaaeaacaWG ObWaa0baaSqaaiaadQgaaeaadaqadaqaaiaadYgaaiaawIcacaGLPa aaaaGccqqHuoarcaWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaakiab fs5aejaadkgadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHepaDda ahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaakiaadIga daqhaaWcbaGaamOAaaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaa aakiabfs5aejaadohadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeuiL dqKaeqiUde3aaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeqiXdq3aaW baaSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGccaWGObWa a0baaSqaaiaadQgaaeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaa GccqqHuoarcaWG0bWaaSbaaSqaaiaadMgacaWGQbaabeaakiabfs5a ejaadkgadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaqadaqaaiaayI W7cqaHepaDdaahaaWcbeqaamaabmaabaGaamiBaaGaayjkaiaawMca aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaadIgada qhaaWcbaGaamOAaaqaamaabmaabaGaamiBaaGaayjkaiaawMcaaaaa kiabfs5aejaadshadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeuiLdq KaeqiUde3aaSbaaSqaaiaadMgaaeqaaaGccaGLBbGaayzxaaaaleaa caWGSbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaSqaaiaadQ gacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aaWcbaGaamyAaiab g2da9iaaigdaaeaacaaIZaaaniabggHiLdaakiaaw2haaiabg2da9a aa@946A@

=2 i=1 3 l=1 N Δ b i + τ l Δ θ i + j=1 3 h j l Δ s ij + j=1 3 τ l h j l Δ t ij 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyypa0JaaG OmamaaqahabaWaaabCaeaadaGadaqaaiabfs5aejaayIW7caWGIbWa aSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeqiXdq3aaWbaaSqabeaada qadaqaaiaadYgaaiaawIcacaGLPaaaaaGccqqHuoarcaaMi8UaeqiU de3aaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaabCaeaacaWGObWaa0 baaSqaaiaadQgaaeaadaqadaqaaiaadYgaaiaawIcacaGLPaaaaaGc cqqHuoarcaWGZbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQb Gaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIuoakiabgUcaRmaaqaha baGaeqiXdq3aaWbaaSqabeaadaqadaqaaiaadYgaaiaawIcacaGLPa aaaaGccaWGObWaa0baaSqaaiaadQgaaeaadaqadaqaaiaadYgaaiaa wIcacaGLPaaaaaGccqqHuoarcaWG0bWaaSbaaSqaaiaadMgacaWGQb aabeaaaeaacaWGQbGaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIuoa aOGaay5Eaiaaw2haamaaCaaaleqabaGaaGOmaaaaaeaacaWGSbGaey ypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaaygW7aSqaaiaadMga cqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aOGaaiilaaaa@7C57@

where Δsij = dsij, Δtij = dtij (i, j = 1, 2, 3), Δbi = dbi, Δθi = dθi (i = 1, 2, 3).

где Δsij = dsij, Δtij = dtij (i, j = 1, 2, 3), Δbi = dbi, Δθi = dθi (i = 1, 2, 3). Provided that at least one of the terms is not equal to zero, the obtained expression for d 2Φ can result in

Δ b i + τ l Δ θ i + j=1 3 h j l Δ s ij + j=1 3 τ l h j l Δ t ij 2 i=1,2,3,l=1,,N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacq qHuoarcaaMi8UaamOyamaaBaaaleaacaWGPbaabeaakiabgUcaRiab es8a0naaCaaaleqabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaO GaeuiLdqKaaGjcVlabeI7aXnaaBaaaleaacaWGPbaabeaakiabgUca RmaaqahabaGaamiAamaaDaaaleaacaWGQbaabaWaaeWaaeaacaWGSb aacaGLOaGaayzkaaaaaOGaeuiLdqKaam4CamaaBaaaleaacaWGPbGa amOAaaqabaaabaGaamOAaiabg2da9iaaigdaaeaacaaIZaaaniabgg HiLdGccqGHRaWkdaaeWbqaaiabes8a0naaCaaaleqabaWaaeWaaeaa caWGSbaacaGLOaGaayzkaaaaaOGaamiAamaaDaaaleaacaWGQbaaba WaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaeuiLdqKaamiDamaa BaaaleaacaWGPbGaamOAaaqabaaabaGaamOAaiabg2da9iaaigdaae aacaaIZaaaniabggHiLdaakiaawUhacaGL9baadaahaaWcbeqaaiaa ikdaaaGccaaMe8UaaGjbVpaabmaabaGaamyAaiabg2da9iaaigdaca GGSaGaaGOmaiaacYcacaaIZaGaaiilaiaaysW7caaMe8UaamiBaiab g2da9iaaigdacaGGSaGaeSOjGSKaaiilaiaad6eaaiaawIcacaGLPa aaaaa@80E3@

In the last double sum (from a physical point of view this is quite natural) the inequality d2Φ > 0 takes place at any point, and therefore, at the found stationary point of the function Φ. Consequently, the obtained solution of the system of equations (9) actually provides a minimum of the function Φ [19].

Conclusion

Therefore, we have obtained an analytical solution to the problem of calibrating a spacecraft magnetometer for a model that considers the vector of temperature dependence of zero offsets for each of the measuring axes of the magnetometer unit and the matrix of linear temperature dependence of each of the members of the sensitivity matrix, scaling the signal based on the real sensitivity of each axis and including linear off-axis effects.

The procedure for calculating the calibration parameters of the MU using the derived formulae has the following obvious advantages compared to numerical methods to solve this problem:

  • the number of arithmetic operations is significantly reduced;
  • the problem of possible instability of the method disappears.
×

作者简介

Kirill Kirillov

Reshetnev Siberian State University of Science and Technology

编辑信件的主要联系方式.
Email: kkirillow@yandex.ru
ORCID iD: 0000-0002-3763-1303

Dr. Sc. (Phys. and Math.), Associate Professor, Professor of the Department of Applied Mathematics

俄罗斯联邦, 31, Krasnoyarskii Rabochii prospekt, Krasnoyarsk, 660037

Svetlana Kirillova

Siberian Federal University

Email: svkirillova2009@yandex.ru
ORCID iD: 0000-0003-3779-2825

Cand. Sc. (Technical Sciences), Associate Professor, Associate Professor of the Department of Applied Mathematics and Data Analysis

俄罗斯联邦, 79, Svobodny Av., Krasnoyarsk, 660041

Denis Melent'ev

Siberian Federal University; JSC “Information Satellite Systems” Academician M. F. Reshetnev Company”

Email: denes.2000@mail.ru
ORCID iD: 0009-0009-6187-4098

Graduate Student, Siberian Federal University; Engineer, JSC “RESHETNEV”

俄罗斯联邦, 79, Svobodny Av., Krasnoyarsk, 660041; 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

Gennady Titov

JSC “Information Satellite Systems” Academician M. F. Reshetnev Company”

Email: titov@iss-reshetnev.ru
ORCID iD: 0009-0009-1223-9434

Leading Specialist

俄罗斯联邦, 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

Artem Gashin

Reshetnev Siberian State University of Science and Technology

Email: artem.gashin@gmail.com
ORCID iD: 0009-0000-7062-6285

Graduate student of the Department of Applied Mathematics

俄罗斯联邦, 31, Krasnoyarskii Rabochii prospekt, Krasnoyarsk, 660037

参考

  1. Belsten N., Knapp M., Masterson R., Payne C., Ammons K., Lind F.D., Cahoy K. Verification and calibration of a commercial anisotropic magnetoresistive magnetometer by multivariate non-linear regression. Geoscientific Instrumentation, Methods and Data Systems. 2023, Vol. 12, No. 2, P. 201–213. doi: 10.5194/gi-12-201-2023.
  2. Chen M., Liu K., Hu X., Li Y., Hao X., Pan Z. Ground calibration of the Mars orbiter magnetometer onboard Tianwen-1. Earth and Planetary Physics. 2023, Vol. 7, No. 3, P. 371–377. doi: 10.26464/epp2023004.
  3. Cheng S., Wang G., Zhang T., Pan Z., Meng L., Yi Z. An optimal method for in-flight calibration of the fluxgate magnetometer when the total magnetic field of alfvén waves has a drift trend. Acta Geophysica Sinica. 2022, Vol. 65, No. 5, P. 1558–1570. doi: 10.6038/cjg2022P0362.
  4. Crassidis J.L., Cheng Ya. Three-axis magnetometer calibration using total least squares. Journal of Guidance, Control, and Dynamics. 2021, Vol. 44, No. 8, P. 1410–1424. doi: 10.2514/1.g005305.
  5. Huang Yu., Wu L., Wang Ya., Xu Y. Scalar calibration of total instrument errors of tri-axial magnetometer using constrained optimization independent of magnetic field intensity. IEEE Sensors Journal. 2024, Vol. 24, No. 9, P. 14352–14360. doi: 10.1109/jsen.2024.3370624.
  6. Kim Ji.H., Lee Ch.Ju., Lee Ju.K. Effects of outlier elimination in magnetometer calibration data on the performance of ellipsoid fitting-based calibration. Journal of Institute of Control, Robotics and Systems. 2024, Vol. 30, No. 12, P. 1373–1379. doi: 10.5302/j.icros.2024.24.0209.
  7. Kinatas H., Hajiyev Ch. Triad-Aided Multiplicative EKF for Small Satellite Attitude Estimation and Magnetometer Calibration. IEEE Sensors Journal. 2023, Vol. 23, No. 22, P. 27161–27168. doi: 10.1109/jsen.2023.3317969.
  8. Liu J., Yan Y., Yan Sh., Li X. A hybrid calibration method for a three-axis magnetometer in limited-range attitudes. IEEE Sensors Journal. 2022, Vol. 22, No. 1, P. 203–210. doi: 10.1109/jsen.2021.3123728.
  9. Pang H., Wan Ch., Mou Sh., Wei Lu., Li H., Zhang Qi., Pan M., Yang D. Integrated calibration of strap-down geomagnetic vector measurement system. IEEE Sensors Journal. 2022, Vol. 22, No. 11, P. 10476–10484. doi: 10.1109/jsen.2022.3171325.
  10. Riwanto B.A., Niemela P., Mughal M.R., Praks J., Ehrpais H., Slavinskis A. Particle swarm optimization for magnetometer calibration with rotation axis fitting using in-orbit data. IEEE Transactions on Aerospace and Electronic Systems. 2022, Vol. 58, No. 2, P. 1211–1223. doi: 10.1109/TAES.2021.3122514.
  11. Soken H. E. A survey of calibration algorithms for small satellite magnetometers. Measurement. 2018, Vol. 122, P. 417–423. doi: 10.1016/j.measurement.2017.10.017.
  12. Song H., Park Ja., Lee Ja. Magnetometer calibration based on the Chaos-7 model. Journal of Astronomy and Space Science. 2021, Vol. 38, No. 3, P. 157–164. doi: 10.5140/jass.2021.38.3.157.
  13. Wang Y., Yu X., Zong Q., Xiao Ch., Liu Si., Chen H., Zou H., Shi W. In-flight vector magnetometer calibration for FY-3E satellite. Science China Technological Sciences. 2023, Vol. 66, No. 6, P. 1867–1868. doi: 10.1007/s11431-022-2338-1.
  14. Withanage D. Ch., Teramoto M., Cho M. On-orbit magnetometer data calibration using genetic algorithm and interchangeability of the calibration parameters. Applied Sciences (Switzerland). 2023, Vol. 13, No. 11, P. 6742. doi: 10.3390/app13116742.
  15. Zeng W., Bian Q., Gao Ju., Chang L., Tong Yu. Attitude-independent magnetometer calibration based on adaptive filtering. IEEE Sensors Journal. 2022, Vol. 22, No. 1, P. 195–202. doi: 10.1109/jsen.2021.3114347.
  16. Rozin P. E., Simonov A. V., Gordienko E. S., Zaiko Yu. K. [In-Flight Calibration of the “Dekart” Cubesat Magnetometer]. Trudy MAI. 2022, No. 124. doi: 10.34759/trd-2022-124-19 (In Russ.).
  17. Rozenfel'd B. A. Mnogomernye prostranstva [Multidimensional spaces]. Moscow, Lenand Publ., 2021, 672 p.
  18. Zorkal'tsev V. I. Metod naimen'shikh kvadratov: geometricheskie svoystva, al'ternativnye podkhody, prilozheniya [Least squares: geometric properties, alternative approaches, applications]. Novosibirsk, Nauka Publ., 1995, 220 p.
  19. Tsirlin A. M. Metody optimizatsii dlya inzhenerov [Optimization methods for engineers]. Moscow, Berlin: Direkt-Media Publ., 2015, 214 p.
  20. Horn R. A., Johnson C.R. Matrix Analysis (2nd ed.). Cambridge University Press, 2012, 643 p.
  21. Gantmakher F. R. Teoriya matrits [Matrix theory]. Moscow, Fizmatlit Publ., 2004, 560 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kirillov K.A., Kirillova S.V., Melent'ev D.O., Titov G.P., Gashin A.A., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可