The asymptotic probabilistic genetic algorithm


Citar

Texto integral

Resumo

This paper proposes the modification of probabilistic genetic algorithm, which uses genetic operators, not affecting the particular solutions, but the probabilities distribution of solution vector's components. This paper also compares the reliability and efficiency of the base algorithm and proposed modification using the set of test optimization problems and bank loan portfolio problem.

Sobre autores

P Galushin

Siberian State Aerospace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk

Siberian State Aerospace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk

E Semenkin

Siberian State Aerospace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk

Siberian State Aerospace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk

Bibliografia

  1. Semenkin, E. S. Probabilistic evolutionary algorithms of complex systems optimization/E. S. Semenkin, E. A. Sopov // Proc. of Int. Conf. Intelligent systems (AIS'05) and Intelligent CAD (CAD-2005): in 3 vol. Vol. 1. M.: Fizmatlit, 2005. (inRussian)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Galushin P.V., Semenkin E.S., 2009

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.