On the function of time distribution of a complex computing system uptime

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Any space computing complex is a complicated system. A complicated system is understood as a set of functionally related heterogeneous devices designed to perform certain functions and solve problems facing the system. One of the important characteristics of a system is its uptime. This characteristic is often considered to be a random variable. However, such a mathematical model is quite limited, since the uptime depends on many characteristics (parameters) that describe a system. Therefore, the uptime can be assumed to be a continuous random field (that is, a random function of many variables). It is this approach that is used in this work. If there are certain restrictions on the uptime of a computing system, upper estimates are found for the distributions of a random number of system failures. Therefore, the problem of estimating Gaussian field distribution in Hilbert space arises.

Two theorems that allow calculating the probability of a Gaussian vector falling into a sphere of a given radius are proved in the paper.

The paper is devoted to the reliability of a computing system. The random number of a computing system failures v(r) is a characteristic of its reliabilityThe v(r) distribution is the distribution of the sum of a computing system random uptime. It is impossible to write down the distribution v (r) explicitly. Therefore, one has to look for an estimate of these distributions from above. Assuming that the uptime of a computing system is the sum of many variables, the authors of the paper obtained the following results: it is shown that the problem of estimating the distributions of a random number of system failures can be considered as the problem of estimating the convergence rate  in the central limit theorem in Banach spaces; if there are certain restrictions on the uptime of a computing system, upper estimates are found for the distributions of a random number of system failures. The estimates obtained can be used for further research in the theory of computing systems reliability. Knowing these upper estimates, it is possible to predict the level of average costs for computer systems restoration, as well as for the development of special mathematical and algorithmic support for analysis systems, for management, decision-making and information processing tasks.

Авторлар туралы

Tamara Shiryaeva

Krasnoyarsk State Agrarian University

Email: info@kgau.ru

Cand. Sc., Professor

Ресей, 90, Mira Av., Krasnoyarsk, 660001

Anatoly Shlepkin

Krasnoyarsk State Agrarian University

Хат алмасуға жауапты Автор.
Email: ak_kgau@mail.ru

Dr. Sc., Professor

Ресей, 90, Mira Av., Krasnoyarsk, 660001

Konstantin Filippov

Krasnoyarsk State Agrarian University

Email: info@kgau.ru

Dr. Sc., Professor

Ресей, 90, Mira Av., Krasnoyarsk, 660001

Zlata Kolmakova

Khakas State University

Email: kolzlata@yandex.ru

Cand. Sc.

Ресей, 90, Lenin Av., Abakan, 655017

Әдебиет тізімі

  1. Barzilevich E. Yu., Belyaev Yu. K., Kashtanov V. A. et al. Voprosy matematicheskoj teorii nadezhnosti [Questions of the mathematical theory of reliability]. Moscow, Radio i svyaz Publ., 1983, 376 p.
  2. Belyaev Yu. K., Dulina T. N., Chepurin E. V. [Calculation of the low probability of failure-free operation of complex systems. Part 1] Izv. AN SSSR, Tekhnicheskaya kibernetika. 1967, No. 2, P. 52–69 (In Russ.).
  3. Belyaev Yu. K., Dulina T. N., Chepurin E. V. [Calculation of the lower limit of the probability of failure-free operation of complex systems. Part 2]. Izv. AN SSSR, Tekhnicheskaya kibernetika. 1967, No. 3, P. 63–78 (In Russ.).
  4. Bentkus V. Yu., Rachkauskas A. Yu. [Estimates of the convergence rate of sums of independent random variables in a Banach space]. Litovskiy mat. sb. 1982, Vol. XXII, No. 4, P. 8–20 (In Russ.).
  5. Bentkus V. Yu., Rachkauskas A. Yu. [Estimates of the convergence rate of sums of independent random variables in a Banach space]. Litovskiy mat. sb. 1982, Vol. XXII, No. 3, P. 12–18 (In Russ.).
  6. Araujo de A., Gine E. The central limit theorem for the Real and Banach Valued Random Varicolles. New York: Yoth Willey and Sons, 1980.
  7. Forter R., Mourier E. Les functions aleatoiresdans les espaces de Banach. Studia Math. 1955, No. 15, P. 62–73.
  8. Gine E. On the central limit theorem for sample continuous processes. Annales of Profability. 1974, P. 62–73.
  9. Gine E., Marcus N.B. On the CLT in C (K). Leet Notes Math. 1969, Vol. 89, P. 62–73.
  10. Gotze F. On rate of convergence in central limit theorem in Banach spaces. Annales of Profability. 1976, Vol. XIV, No. 3, P. 852–859.
  11. Hoffman-Yorgensen Y., Pisier G. The law of large members and the central limit theorem in Banach spaces. Annales of Profability. 1974, Vol. 4, P 587–599.
  12. Le Cam L. Remarguessur le theoremelimitecentradans les espanceslocalimentcovenes. Probab/ sur les StudiaAigebr. CNKS. Paris, 1990, P. 233–245.
  13. Levy P. Processusstochastiqueset movement Brownian. Paris Gauthier-Villars, 1948.
  14. Mourier E. Properties des carcteristiques d’un element aleatoiredanunespace de Banach. AkedSn Paris. 1950, Vol. 231, P. 28–25.
  15. Mourier E. Elements aleatoriesdansunespace de Banach. Ann. Inst. H. Poincare. 1953, P. 161–244.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Shiryaeva T.A., Shlepkin A.K., Filippov K.A., Kolmakova Z.A., 2020

Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>