Generalized equivalent strength conditions in the calculations of composite bodies

Capa

Citar

Resumo

Structures with an inhomogeneous regular structure (plates, beams, shells) are widely used in engineering, especially in aviation and rocket and space. In calculations for the strength of elastic composite structures using the finite element method (FEM), it is important to know the error of the solution. To analyze the error of the solution, it is necessary to use a sequence of approximate solutions constructed according to the FEM using the grinding procedure for basic discrete models that take into account the non-homogeneous, micro-homogeneous structure of structures (bodies) within the micro-approach. The implementation of the grinding procedure for basic models requires large computer resources.

In this paper, the method of equivalent strength conditions (MESC) for testing the static strength of elastic bodies with an inhomogeneous regular structure, for which sets of different loads are given, is briefly described. According to the MESC, the calculation of the strength of a composite body for which the loading is set is reduced to the calculation of the strength of an isotropic homogeneous body (having the same loading as a composite body) using equivalent strength conditions. In the numerical implementation of the MESC, adjusted equivalent strength conditions are used, which take into account the error of approximate solutions. Here, the MESC is implemented on the basis of the FEM. If a set of different loads is specified for a composite body, then generalized equivalent strength conditions are applied in this case. The procedure for constructing generalized equivalent strength conditions is shown. The calculation of the strength of composite bodies according to the MESC using multigrid finite elements requires  times less computer memory than a similar calculation using crushed basic models of composite bodies. The given example of calculating the strength of a composite beam, for which a set of loads is set, using the MESC using generalized equivalent strength conditions shows its high efficiency.

Sobre autores

Alexander Matveev

Institute of computational modeling SB RAS

Autor responsável pela correspondência
Email: mtv241@mail.ru

Cand. Sc., associate Professor, senior researcher

Rússia, Krasnoyarsk, 630036

Bibliografia

  1. Pisarenko G. S., Yakovlev A. P., Matveev V. V. Spravochnik po soprotivleniyu materialov [Handbook of resistance materials']. Kiev, Nauk. Dumka Publ., 1975, 704 p.
  2. Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost' detalej mashin [Calculation of the strength of machine parts]. Moscow, Mashinostroenie Publ., 1993, 640 p.
  3. Moskvichev V. V. Osnovy konstrukcionnoj prochnosti tekhnicheskih sistem i inzhenernyh sooruzhenij [Fundamentals of structural strength of technical systems and engineering structures]. Novosibirsk, Nauka Publ., 2002, 106 p.
  4. Matveev A. D. [Calculation of elastic structures using the adjusted terms of strength]. Izvestiya AltGU. 2017, No. 4, P. 116–119. doi: 10.14258/izvasu(2017)4-21.
  5. Norri D., de Friz Zh. Vvedenie v metod konechnykh elementov [Introduction to the finite element method]. Moscow, Mir Publ., 1981, 304 p.
  6. Zenkevich O. Metod konechnykh elementov v tekhnike [Finite element method in engineering]. Moscow, Mir Publ., 1975, 544 p.
  7. Fudzii T., Dzako M. Mekhanika razrusheniya kompozicionnyh materialov [Fracture mechanics of composite materials]. Moscow, Mir Publ., 1982, 232 р.
  8. Matveev A. D. [The method of multigrid finite elements in the calculations of three-dimensional homogeneous and composite bodies]. Uchen. zap. Kazan. un-ta. Seriia: Fiz.-matem. Nauki. 2016, Vol. 158, No. 4, P. 530–543 (In Russ.).
  9. Matveev A. D. [Multigrid method for finite elements in the analysis of composite plates and beams]. Vestnik KrasGAU. 2016, No. 12, P. 93–100 (In Russ.).
  10. Matveev A. D. Multigrid finite element method in stress of three-dimensional elastic bodies of heterogeneous structure. IOP Conf, Ser.: Mater. Sci. Eng. 2016, Vol. 158, No. 1, Art. 012067, P. 1–9.
  11. Matveev A.D. Metod mnogosetochnyh konechnyh elementov v raschetah kompozitnyh plastin i balok slozhnoj formy [Multigrid finite element Method in the calculations of composite plates and beams of irregular shape]. // The Bulletin of KrasGAU, 2017, No. 11, P. 131–140.
  12. Matveev A. D. [Multigrid finite element Method]. The Bulletin of KrasGAU. 2018, No. 2, P. 90–103 (In Russ.).
  13. Matveev A. D. [The method of. multigrid finite elements of the composite rotational and bicurved shell calculations]. The Bulletin of KrasGAU. 2018, No. 3, P. 126–137 (In Russ.).
  14. Matveev A. D. [Method of. multigrid finite elements to solve physical boundary value problems]. Ministry of information technologies and mathematical modeling. Krasnoyarsk, 2017, P. 27–60.
  15. Matveev A. D. [Some approaches of designing elastic multigrid finite elements]. VINITI Proceedings. 2000, No. 2990-B00, P. 30.
  16. Matveev A. D. [Multigrid modeling of composites of irregular structure with a small filling ratio]. J. Appl. Mech. Tech. Phys. 2004, No. 3, P. 161–171 (In Russ.).
  17. Matveev A. D. [The construction of complex multigrid finite element heterogeneous and micro-inhomogeneities in structure]. Izvestiya AltGU. 2014, No. 1/1, P. 80–83 (In Russ.). doi: 10.14258/izvasu(2014)1.1-18.
  18. Matveev A. D. [Method of generating finite elements]. The Bulletin of KrasGAU. 2018, No. 6, P. 141–154 (In Russ.).
  19. Matveev A. D. [Construction of multigrid finite elements to calculate shells, plates and beams based on generating finite elements]. PNRPU Mechanics Bulletin. 2019, No. 3, P. 48–57 (In Russ.). Doi: 10/15593/perm.mech/2019.3.05.
  20. Golushko S. K., Nemirovskij Y. V. Pryamye i obratnye zadachi mekhaniki uprugih kompozitnyh plastin i obolochek vrashcheniya [Direct and inverse problems of mechanics of elastic composite plates and shells of rotation]. Moscow, Fizmatlit Publ., 2008, 432 p.
  21. Nemirovskij Y. V., Reznikov B. S. Prochnost' elementov konstrukcij iz kompozitnyh materiallov [Strength of structural elements made of composite materials]. Novosibirsk, Nauka Publ., Sibirskoe ot-delenie. 1984, 164 p.
  22. Kravchuk A. S., Majboroda V. P., Urzhumcev Y. S. Mekhanika polimernyh i kompozicionnyh materialov [Mechanics of polymer and composite materials]. Moscow, Nauka Publ., 1985, 201 p.
  23. Alfutov N. A., Zinov'ev A. A., Popov B. G. Raschet mnogoslojnyh plastin i obolochek iz kompozicionnyh materialov [Calculation of multilayer plates and shells made of composite materials]. Moscow, Mashinostroenie Publ., 1984, 264 p.
  24. Pobedrya B. E. Mekhanika kompozicionnyh materialov [Mechanics of composite materials]. Moscow, MGU Publ., 1984, 336 p.
  25. Andreev A. N., Nemirovskij Y. V. Mnogoslojnye anizotropnye obolochki i plastiny. Izgib, ustojchivost’, kolebaniya [Multilayer anisotropic shells and plates. Bending, stability, vibration]. Novosibirsk : Nauka Publ., 2001, 288 p.
  26. Vanin G.A. Mikromekhanika kompozicionnyh materialov [Micromechanics of composite materials]. Kiev, Naukova dumka Publ., 1985, 302 p.
  27. Vasil’ev V. V. Mekhanika konstrukcij iz kompozicionnyh materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroenie Publ., 1988, 269 p.
  28. Matveev A. D. [Calculation of the strength of composite structures using equivalent strength conditions]. The Bulletin of KrasGAU. 2014, No. 11, P. 68–79 (In Russ.).
  29. Matveev A. D. [The method of equivalent strength conditions in calculating composite structures regular structure using multigrid finite elements]. Siberian Journal of Science and Technology. 2019. Vol. 20, No. 4, P. 423-435. doi: 10.31772/2587-6066-2019-20-4-423-435.
  30. Samul’ V. I. Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity]. Moscow, Vysshaia shkola Publ., 1982, 264 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Matveev A.D., 2021

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies