Production of recombinant IGF1 and its action on neuroblastoma cells in vitro

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This study aimed to develop a method for producing human recombinant insulin-like growth factor (IGF-1) based on a prokaryotic expression system and to characterize the highly purified protein.

To achieve the study’s goal, the following methods were conducted: we performed automated chemical synthesis of DNA, constructed the expression plasmid, obtained Escherichia coli cell-producers of human recombinant IGF-1, cultivated the obtained producer cells with the induction of recombinant protein synthesis by isopropyl-β-D-1-thiogalactopyranoside and lactose, and purified human recombinant IGF-1 with affinity and cation exchange chromatography.

The recombinant protein IGF-1 forms inclusion bodies during synthesis in Escherichia coli BL21 cells that contain plasmid pET28-IGF-1. Purified recombinant protein was obtained with a purity of 98% using affinity and cation exchange chromatography methods. The protein yield was 6 mg of human recombinant IGF-1 from 1 g of raw biomass. The resulting protein has the ability to protect Neuro 2a neuroblastoma cells from death caused by the deprivation of serum in the culture medium and can stimulate the differentiation of cells into neurons.

Thus, a highly purified human recombinant IGF-1 was obtained. This protein has biological activity and is suitable for preclinical studies.

Full Text

Restricted Access

About the authors

Sergey A. Ishuk

Institute of Experimental Medicine

Author for correspondence.
Email: s.ischuk.spb@gmail.com

Postgraduate Student, Department of Medical Biotechnology and Immunopharmacology

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

Elena G. Bogomolova

Institute of Experimental Medicine; Limited Liability Company “Biochemical Agent”

Email: bogomolovaele@inbox.ru

Postgraduate Student, Department of Medical Biotechnology and Immunopharmacology; Deputy Director for Science

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376; Saint-Petersburg

Olga A. Dobrovolskaya

Institute of Experimental Medicine

Email: dobrovolskaya-oly@yandex.ru

Research Worker, Department of Medical Biotechnology and Immunopharmacology

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

Alyona O. Akhmetshina

Limited Liability Company “Biochemical Agent”

Email: akhmetshinaalena@gmail.com

Research Worker

Russian Federation, Saint Petersburg

Daria S. Krasnoshchek

Pavlov First Saint Petersburg State Medical University

Email: dkrasnoshchek@list.ru

6th year student

Russian Federation, 6/8, Lva Tolstogo street, St. Petersburg, 197089

Anna A. Lukovenko

Limited Liability Company “Biochemical Agent”

Email: a.lukovenko@yahoo.com

Junior research assistant

Russian Federation, Saint Petersburg

Ekaterina A. Fedorova

Institute of Experimental Medicine

Email: science.eaf@yandex.ru

Research Worker, Department of Medical Biotechnology and Immunopharmacology

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

Alexander M. Klyus

Limited Liability Company “Infarm Consulting”

Email: Inffarmcon@gmail.com

Director General

Russian Federation, Saint Petersburg

Nikolay N. Kolmakov

Institute of Experimental Medicine

Email: ashvin.nick@gmail.com

Research Worker, Department of Molecular Genetics

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

Julia V. Zherebtsova

Institute of Experimental Medicine

Email: juliazh@yandex.ru

Junior research assistant, Department of Medical Biotechnology and Immunopharmacology

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

Ilya V. Dukhovlinov

Institute of Experimental Medicine

Email: dukhovlinov@gmail.com

PhD in Biology, Head of the Laboratory of Protein Genetic Engineering, Department of Medical Biotechnology and Immunopharmacology

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

Nikolai A. Klimov

Institute of Experimental Medicine

Email: nklimov@mail.ru

MD, PhD, Leading research associate, Department of Molecular Biotechnology and Immunopharmacology

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

Andrey S. Simbirtsev

Institute of Experimental Medicine

Email: simbas@mail.ru

PhD in Biology, corresponding member Russian Academy of Sciences, Head of the Department of Medical Biotechnology and Immunopharmacology

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

References

  1. Laviola L, Natalicchio A, Perrini S, Giorgino F. Abnormalities of IGF-I signaling in the pathogenesis of diseases of the bone, brain, and fetoplacental unit in humans. Am J Physiol Endocrinol Metab. 2008;295(5):E991-999. https://doi.org/10.1152/ajpendo.90452.2008.
  2. Dyer AH, Vahdatpour C, Sanfeliu A, Tropea D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience. 2016;325:89-99. https://doi.org/10.1016/ j.neuroscience.2016.03.056.
  3. O’Kusky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol. 2012;33(3):230-251. https://doi.org/10.1016/j.yfrne.2012.06.002.
  4. Yamada M, Tanabe K, Wada K, et al. Differences in survival-promoting effects and intracellular signaling properties of BDNF and IGF-1 in cultured cerebral cortical neurons. J Neurochem. 2001;78(5):940-951. https://doi.org/10.1046/j.1471-4159.2001.00497.x.
  5. Lindholm D, Carroll P, Tzimagiorgis G, Thoenen H. Autocrine-paracrine Regulation of Hippocampal Neuron Survival by IGF-1 and the Neurotrophins BDNF, NT-3 and NT-4. Eur J Neurosci. 1996;8(7):1452-1460. https://doi.org/10.1111/j.1460-9568.1996.tb01607.x.
  6. Fernandez M, Sanchez-Franco F, Palacios N, et al. IGF-I inhibits apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway in pituitary cells. J Mol Endocrinol. 2004:155-163. https://doi.org/10.1677/jme.0.0330155.
  7. Reinhardt RR. Insulin-like growth factors cross the blood-brain barrier. Endocrinology. 1994;135(5):1753-1761. https://doi.org/10.1210/endo.135.5.7525251.
  8. Nishijima T, Piriz J, Duflot S, et al. Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron. 2010;67(5):834-846. https://doi.org/10.1016/ j.neuron.2010.08.007.
  9. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH, 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481-496. https://doi.org/10.1016/j.neuroscience.2004.05.029.
  10. Expasy.org [Internet]. ExPASy. Bioinformatics Resource Portal [cited 2018 Feb 17]. Avaliable from: https://www.expasy.org/.
  11. Bake S, Selvamani A, Cherry J, Sohrabji F. Blood brain barrier and neuroinflammation are critical targets of IGF-1-mediated neuroprotection in stroke for middle-aged female rats. PLoS One. 2014;9(3):e91427. https://doi.org/10.1371/journal.pone.0091427.
  12. Kooijman R, Sarre S, Michotte Y, De Keyser J. Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke. 2009;40(4):e83-88. https://doi.org/10.1161/STROKEAHA.108.528356.
  13. Liu X-F, Fawcett JR, Thorne RG, Frey Ii WH. Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett. 2001;308(2):91-94. https://doi.org/10.1016/s0304-3940(01)01982-6.
  14. Majumder K. Ligation-free gene synthesis by PCR: synthesis and mutagenesis at multiple loci of a chimeric gene encoding OmpA signal peptide and hirudin. Gene. 1992;110(1):89-94. https://doi.org/10.1016/0378-1119(92)90448-x.
  15. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. - М.: Мир, 1984. [Maniatis T, Fritsch E, Sambrook J. Molecular Cloning: A Laboratory Manual. Moscow: Mir; 1984. (In Russ.)]
  16. Studier FW. Stable expression clones and auto-induction for protein production in E. coli. Methods Mol Biol. 2014;1091:17-32. https://doi.org/10.1007/978-1-62703-691-7_2.
  17. Shunyan J, Shuqin L, Chunjiang Z, Changxin W. Developing Protocols of Tricine-SDS-PAGE for Separation of Polypeptides in the Mass Range 1-30 kDa with Minigel Electrophoresis System. Int J Electrochem Sci. 2016;11:640-649.
  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275.
  19. Rotwein P. Two insulin-like growth factor I messenger RNAs are expressed in human liver. Proceedings of the National Academy of Sciences. 1986;83(1):77-81. https://doi.org/10.1073/pnas.83.1.77.
  20. Codon usage database. URL: http://www.kazusa.or.jp/codon.
  21. Vincent AM, Mobley BC, Hiller A, Feldman EL. IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis. 2004;16(2):407-416. https://doi.org/10.1016/j.nbd.2004.03.001.
  22. Tang Y, Zhang W, Tang H, Li P. Protective effects of IGF-1 on neurons under condition of hypoxia and the role of PI3K signal pathway. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(1):21-26. https://doi.org/10.3969/j.issn.1672-7347.2011.01.004.
  23. Духовлинов И.В., Богомолова Е.Г., Добровольская О.А., и др. Продукция in vivo инсулиноподобного фактора роста-1 (ИФР-1), кодируемого плазмидной ДНК // Медицинский академический журнал. - 2017. - Т. 17. - № 3. - С. 47-52. [Dukhovlinov IV, Bogomolova EG, Dobrovolskaya OV, et al. In vivo production of insulin-like growth factor coded by plasmid DNA. Med Akad Z. 2017;17(3):47-52. (In Russ.)]
  24. Han IK, Kim MY, Byun HM, et al. Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy. J Mol Med (Berl). 2007;85(1):75-83. https://doi.org/10.1007/s00109-006-0114-9.
  25. Lin S, Fan LW, Rhodes PG, Cai Z. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats. Exp Neurol. 2009;217(2):361-370. https://doi.org/10.1016/j.expneurol.2009.03.021.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electrophoregram of proteins obtained from lysates of E. coli BL21 cells (pET28-IGF-1) after induction of the synthesis of recombinant human IGF-1: 1 — Thermo Fisher Scientific molecular weight marker; 2 - control (night culture without inductor); 3 - induction of 1 mM IPTG, 5 hours; 4 - induction of 0.2% lactose by the method of Studier, 18 hours

Download (155KB)
3. Fig. 2. Purification of recombinant human IGF-1 by metal chelate chromatography. 80 mg of protein is applied. On the chromatogram: line [1] - optical density at a wavelength of 280 nm; line [2] - imidazole gradient

Download (130KB)
4. Fig. 3. Electrophoresis in 12.5% PAGE of purified recombinant human IGF-1: 1 — Thermo Fisher Scientific molecular weight markers; 2 - 5 µg of recombinant protein IGF-1, purified on a SP-Sepharose column

Download (54KB)
5. Fig. 4. The effect of recombinant IGF-1 on the differentiation of Neuro 2a cells in vitro: a - Neuro 2a cells grown in serum-free medium for 48 hours (× 100); b - Neuro 2a cells grown similarly to (a) with the addition of 100 ng / ml IGF-1 (× 100); c - Neuro 2a cells grown in serum-free medium for 3 hours, followed by return to growth medium (positive control of differentiation) (× 100)

Download (451KB)

Copyright (c) 2018 Ishuk S.A., Bogomolova E.G., Dobrovolskaya O.A., Akhmetshina A.O., Krasnoshchek D.S., Lukovenko A.A., Fedorova E.A., Klyus A.M., Kolmakov N.N., Zherebtsova Y.V., Dukhovlinov I.V., Klimov N.A., Simbirtsev A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies