Huntington's chorea ethyopathogenesis: results and perspectives of experimental modeling
- Authors: Yakimovskii A.F.1, Varshavskaja V.M.1
-
Affiliations:
- I. P. Pavlov State Medical University
- Issue: Vol 6, No 2 (2006)
- Pages: 28-40
- Section: Reviews
- Published: 18.05.2006
- URL: https://journals.eco-vector.com/MAJ/article/view/693575
- ID: 693575
Cite item
Abstract
Huntington's chorea (disease) is a progressive, autosomal dominant, neurodegenerative brain disorder, characterized by cognitive decline, psychiatric manifestations, and motor disturbance (hyperkinesis). Because the more of Huntington's chorea pathogenesis stages are unknown, is currently no effective pathogenical treatment to this disease. This article is devoted molecular and neurochemical basis of Huntington's chorea, the way animal modeling of hyperkinesis, physiological and neurological advantages of that models. Results are described application of picrotoxine model of choreo-mioclonic hyperkinesis on rats. Take into consideration the clue role of calcium metabolism in the development hyperkinesis, therapeutic of Huntington's chorea is considered.
About the authors
A. F. Yakimovskii
I. P. Pavlov State Medical University
Author for correspondence.
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg
V. M. Varshavskaja
I. P. Pavlov State Medical University
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg
References
- Бадалян Л. О., Магалов Ш. М., Архипов Б. А. и др. Клинический полиморфизм хореи Гентингтона (по данным изучения Шамхорского очага в Азербайджанской ССР) // Журн. невропатол. и псих. 1998. Т. 89. № 8. С. 49-52.
- Варшавская В. М., Иванова О. Н., Якимовский А. Ф. Двигательное поведение крыс при раздельном и одновременном введении ГАМК-ергических препаратов в неостриатум // Рос. физиол. журн. им. И. М. Сеченова. 2002. T. 88. № 10. С. 1317-1323.
- Дьяконова И. Н., Кураев Г. А., Лагутина Н. И. Модель дискинетического синдрома // Журн. невропатол. и псих. 1968. Т. 68. № 6. C. 805-808.
- Иллариошкин С. Н. Конформационные болезни мозга. М.: Янус-К., 2003. 248 с.
- Крыжановский Г. Н. Общая патофизиология нервной системы М.: Медицина, 1997. 352 с.
- Отеллин В. А., Арушанян Э. Б. Нигрострионигральная система. М.: Медицина, 1989. 279 с.
- Якимовский А. Ф. Способ длительного локального воздействия на нейромедиаторные системы ядер головного мозга // Физиол. журн. СССР. 1988. Т. 74. № 3. С. 745–751.
- Якимовский А. Ф. Миоклонический гиперкинез, вызываемый повторным введением в неостриатум крыс пикротоксина // Бюл. экспер. биол. и мед. 1993. Т. 114. № 1. С. 7-9.
- Якимовский А. Ф., Шатик С. В., Чивилева О. Г., Горбачевская А. И. Влияние на поведение крыс фенамина, содержащегося в хронически вживленной в неостриатум канюле // Журн. высшей нервной деят. 1996. Т. 46. № 2. C. 335-341.
- Якимовский А. Ф. Структурно-топические основы пикротоксинового хореомиоклонического гиперкинеза // Бюл. экспер. биол. и мед. 2002. T. 134. № 8. С. 136-138.
- Якимовский А. Ф., Варшавская В. М. Глутаматергическая система неостриатума вовлечена в генез пикротоксинового хорео-миоклонического гиперкинеза // Бюл. экспер. биол. и мед. 2004. T. 138. № 12. C. 604-607.
- Arrasate M. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death // Nature. 2004. Vol. 431. Р. 805-810.
- Beal M. F., Ferrante R. J. Experimental therapeutics in transgenic mouse models of Huntington's desease // Nat. Rev. Neuroscience. 2004. Vol. 5. P. 373–384.
- Broullet E., Condea F. O., Beal M. F., Hantraye Р. Replicating Huntington's disease phenotype in experimental animals // Progress in Neurobiol. 1999. Vol. 59. P. 427-468.
- Coyle J. T., Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea // Nature. 1976. Vol. 263. P. 244-246.
- Crossman A. R., Mitchel I. J., Sambrook M. A., Jackson A. Chorea and myoclonus in the monkey induced by gamma-aminobutyric acid antagonism in the lentiform complex. The site of drug action and a hypothesis for the neural mechanisms of chorea // Brain. 1988. Vol. 111. Р. 1211-1233.
- Crossman A. R., Sambrook M. A., Jackson А. Experimental hemichorea/hemiballismus in the monkey. Studies on the intracerebral site of action in a drug-induced dyskinesia // Brain. 1984. Vol. 107. P. 579-596.
- Das P. et al. Inhibition of type a GABA receptors by L-type calcium channel blockers // Neuroscience. 2004. Vol. 124. Р. 195-206.
- Fennema-Notestine C. et al. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease // Neurology. 2004. Vol. 63. P. 989–995.
- Furtado J. C. S., Mazurek M. 1. F. Behavioral characterization of quinolinate-induced lesions of the medial striatum: relevance for Huntington's disease // Exp. Neurol. 1996. Vol. 138. Р. 158-168.
- Goldberg Y. P. et al. Absence of disease phenotype and intergenerational stability of the CAG repeat in transgenic mice expressing the human Huntington disease transcript // Hum. Mol. Genet. 1996. Vol. 5. P. 177-185.
- Hebb A. L. O., Robertson H. A., Denovan-Wright E. M. Striatal phosphodiesterase mRNA and protein levels are reduced in Huntington's disease transgenic mice prior to the onset of motor symptoms // Neuroscience. 2004. Vol. 123. P. 967-981.
- Hodgson J. G. et al. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneratio // Neuron. 1999. Vol. 23. P. 181-192.
- Horenstein J., Akabas M. H. Location of a high affinity Zn2+ binding site in the channel of alphalbetal gamma-aminobutyric acid A receptors // Mol. Pharmacol. 1998. Vol. 53. P. 870–877.
- Horsten von S. et al. Transgenic rat model of Huntington's disease // Hum. Mol. Genet. 2003. Vol. 12. Р. 617-624.
- Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes // Cell. 1993. Vol. 72. Р. 971-983.
- Isacson O., Brundin P., Gage F. H., Bjorklund A. Neural grafting in a rat model of Huntington's disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting // Neuroscience. 1985. Vol. 16. Р. 799–817.
- Mangiarini L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice // Cell. 1996. Vol. 72. Р. 493-506.
- Menalled L. B. et al. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice // J. of Neuroscience. 2002. Vol. 22. P. 8266-8276.
- Metman L. V. et al. A randomized, controlled trial using the NMDA-antagonist amantadine // Neurology. 2002. Vol. 59. P. 694-699.
- Myers R. H. Huntington's Disease Genetics // NeuroRx. 2004. Vol. 1. P. 255-262.
- Palfi S. et al. Riluzole reduces incidence of abnormal movements but not striatal cell death in a primate model of progressive striatal degeneration // Experim. Neurol. 1997. Vol. 146. P. 135-141.
- Qian A., Buller A. L., Johnson J. W. NR2 subunitdependence of NMDA receptor channel block by external Mg2+ // J. of Physiol. 2005. Vol. 562. P. 319-331.
- Rektor I. Chorea Sancti Viti in Lexicon medicum anno 1696 // J. Neurol. 2003. Vol. 250. Р. 7-9.
- Richfield E. K. et al. Selective loss of striatal preprotachykinin neurons in a phenocopy of Huntington's disease // Mov. Disord. 2002. Vol. 17. Р. 327-332.
- Rosas H. D. et al. Evidence for more widespread cerebral pathology in early HD: An MRI-based morphometric analysis // Neurology. 2003. Vol. 60. Р. 1615 -1620.
- Ross Ch. A., Margolis R. L. Huntington Disease. Neuropsychopharmacology: The Fifth Generation of Progress / Ed. Davis K. L. et al. Lippincott Williams and Wilkins. NY., 2002. Р. 1817-1830.
- Sanberg P. R. et al. The quinolinic acid model of Huntington's disease: locomotor abnormalities // Exp. Neurol. 1989. Vol. 105. Р. 45-53.
- Shear D. A. et al. Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic aid for use in animal models of Huntington's disease // Prog. Neuro-Psychopharmacol. Biol. Psychiat. 1998. Vol. 22. P. 1217-1240.
- Vergara R. et al. Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice // J. of Physiol. 2003. Vol. 553. Р. 169-182.
- Vonsatte J. P. et al. Neuropathological classification of Huntington's disease // J. Neuropathol. Exp. Neurol. 1985. Vol. 44. P. 559-577.
- Wagster M. V., Hedreen J. C., Peyser C. E., Folstein S. E., Ross C. A. Selective Loss of [3H] Kainic Acid and [3H]AMPA Binding in Layer VI of Frontal Cortex in Huntington's Disease // Exp. Neurol. 1994. Vol. 127. № 1. Р. 70–75.
- Wang T., Hackam A. S., Guggino W. B., Cutting G. R. A single amino acid in GABA 1 receptors affects competitive and noncompetitive components of picrotoxin Inhibition // Proc. Natl. Acad. Sci. 1995. Vol. 92. P. 11751–11755.
- Wollmuth L. P., Kuner T., Sakmann B. Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+ // J. of Physiol. 1998. Vol. 506. P. 13–32.
- Zeevalk G. D., Nicklas W. J. Evidence that the loss of the voltage-dependent Mg2+ block at the N-methyl-D-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism // J. Neurochem. 1992. Vol. 59. Р. 1211-1220.
- Zhorov B. S., Breqestovski P. D. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structureactivity relationships // Biophysical J. 2000. Vol. 78. Р. 1786-1803.
Supplementary files
