Consequences of prenatal effects of hypoxia on developing brain
- Authors: Otellin V.A.1, Gilerovitch E.G.1, Khozhay L.I.1, Korzhevsky D.E.1, Neokessariiskii A.A.1, Grigorev I.P.1, Kostkin V.B.1
-
Affiliations:
- Research Institute of Experimental Medicine of the Russian Academy of Medical Sciences
- Issue: Vol 4, No 4 (2004)
- Pages: 38-45
- Section: Basis medicine
- Published: 29.11.2004
- URL: https://journals.eco-vector.com/MAJ/article/view/693971
- ID: 693971
Cite item
Abstract
The paper presents data on the effects of hypoxia on the development of brain and revealing of consequences of this effect during postnatal ontogenesis. Experiments with hypoxic stress revealed clearly the critical period of development of brain cortex, which has a special sensitivity to damage. The first response consists in lesioning of developing brain (apoptosis, necrosis, changes in membrane properties), while modification of histogenetic processes, alteration in NO-system, gliosis can be considered as adaptive response. Protective antihypoxic responses of the brain related to development of blood circulation, initiation of anti-apoptotic processes, elevation of NO synthase activity in brain vessels and it’s decrease in neurons are formed to the end of embryonic period.
About the authors
V. A. Otellin
Research Institute of Experimental Medicine of the Russian Academy of Medical Sciences
Author for correspondence.
Email: shabanov@mail.rcom.ru
член-корреспондент РАМН
Russian Federation, St. Petersburg, 197376
E. G. Gilerovitch
Research Institute of Experimental Medicine of the Russian Academy of Medical Sciences
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg, 197376
L. I. Khozhay
Research Institute of Experimental Medicine of the Russian Academy of Medical Sciences
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg, 197376
D. E. Korzhevsky
Research Institute of Experimental Medicine of the Russian Academy of Medical Sciences
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg, 197376
A. A. Neokessariiskii
Research Institute of Experimental Medicine of the Russian Academy of Medical Sciences
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg, 197376
I. P. Grigorev
Research Institute of Experimental Medicine of the Russian Academy of Medical Sciences
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg, 197376
V. B. Kostkin
Research Institute of Experimental Medicine of the Russian Academy of Medical Sciences
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg, 197376
References
- Ватаева Л. В., Косткин В. Б., Макухина Г. В. и др. Поведение в «открытом поле» у самок и самцов крыс, подвергавшихся действию гипоксии в различные сроки пренатального периода развития // Доклады РАН. 2001. Т. 380. № 1. С. 125-127.
- Володин Н. И., Медведев М. И., Рогаткин С. О. Актуальные проблемы перинатальной неврологии на современном этапе // Журн. невропатологии и психиатрии. 2001. № 7. С. 4-8.
- Конев С. В. Структурная лабильность биологических мембран и регуляторные процессы. Минск: Наука и техника, 1987. 240 с.
- Меерсон Ф. 3. Физиология адаптационных процессов: Руководство по физиологии. М.: Наука, 1986. С. 636.
- Новиков С. Д. Программированная клеточная гибель. СПб.: Наука, 1996. С. 276.
- Отеллин В. А., Хожай Л. И., Гилерович Е. Г. и др. Повреждающие воздействия в критические периоды пренатального онтогенеза как фактор, модифицирующий структурное развитие головного мозга и поведенческие реакции после рождения // Вестник РАМН. 2002. № 12. С. 32-35.
- Отеллин В. А., Хожай Л. И., Гилерович Е. Г. и др. Клеточные и тканевые реакции эмбрионального головного мозга животных на гипоксию // Доклады РАН. 2003. Т. 3 93. № 5. С. 1-3.
- Соколова Н. А., Маслова М. В., Маклакова А. С., Ашмарин И. П. Пренатальный гипоксический стресс: физиологические и биохимические последствия, коррекция регуляторными пептидами // Успехи физиол. наук. 2002. Т. 33. № 2. С. 56-67.
- Gavrieli Y, Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situvia specific labeling of nuclear DNA fragmentation // J. Cell. Biol. 1992. Vol. 119. № 3. P. 493-501.
- Habek D., Habek B., Herman R., Habek J. Fetal hypoxia - etiology and pathophysiology of hypoxic damage // Lijec. Vjesn. 2000. Vol. 122. № 3-4. P. 82-89.
- Ishimaru M. J., Ikonomidou C., Tenkova T. I et al. Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain // J. Compar. Neurol. 1999. Vol. 408. №4. P. 461-478.
- Joseph V, Mamet J., Lee F. et al. Prenatal hypoxia impairs circadian synchronisation and response of the biological clock to light in adult rats // J. Physiol. 2002. Vol. 543. P. 3 87-395.
- Mamet J., Peyrennet J., Roux J. C. et al. Longterm prenatal hypoxia alters maturation of adrenal medulla in rat // Pediatr. Res. 2002. Vol. 51. № 2. P. 207-214.
- Mishra О. P. Delivoria-Papadopoulos M. Cellular mechanisms of hypoxic injury in the developing brain // Brain Res. Bull. 1999. Vol. 48. № 3. P. 233-238.
- Mitchell E. S., Snyder-Keller A. Blockade of D1 dopaminergic transmission alleviates c-fos induction and cleaved caspase-3 expression in the brain of rat pups exposed to prenatal cocaine or prenatal asphyxia // Exp. Neurol. 2003. Vol. 182. № l.P. 64-74.
- Nordstrom L., Arulkumaran S. Intrapartum fetal hypoxia and biochemical markers: a review // Obstet. Gynecol. Surv. 1998. Vol. 53. № 10. P. 645-657.
- Pakarian E., Bewley S., Pearson T. C. Prenatal hypoxic ischaemic-encephalopathy leading to microcephaly in a sickle cell pregnancy withrecovery from a terminal CTG // BJOG. 2001. Vol. 108. № 2. P. 219-222.
- Pascual J. M., Koenigsberger M. R. Cerebral palsy: prenatal risk factors // Rev. Neurol. 2003. Vol. 3 7. № 3. P. 275-280.
- Simonati A., Rosso T., Rizzuto N. DNA fragmentaion in normal development of the human central nervous system: a morphological study during corticogenesis // Neuropathol. Appl. Neurobiol. 1997. Vol. 23. № 3. P. 203-211.
- Tashima L., Nakata M, Sugino N., Kato H. Prenatal influence of ischemia-hypoxia-induced intrauterine growth retardation on brain development and behavioral activity in rats // Biol. Neonate. 2001. Vol. 80. № 1. P. 351-366.
- Vekrellis K., McCarthy M. J., Whitfield J. et al. Bax promotes neuronal cell death and is down- regulated during the development of the nervous system // Development. 1997. Vol. 124. № 6. P. 1239-1249.
- Vexler Z. S., Ferriero D. M. Molecular and biochemical mechanisms of perinatal brain injury // Semin. Neonatol. 2001. Vol. 6. № 2. P. 99-108.
Supplementary files
