Targeted regulation of pathogenic properties in streptococci

  • Authors: Dmitriev AV1, Rozhdestvenskaya AS1, Zutkis AA1, Totolian AA1
  • Affiliations:
    1. Institute of Experimental Medicine of the NorthWest Branch of the Russian Academy of Medical Sciences, Saint-Petersburg
  • Issue: Vol 9, No 4 (2009)
  • Pages: 50-58
  • Section: Articles
  • URL:


For the study of targeted regulation of pathogenic properties in streptococci, the following biological models were selected: DNA-binding regulatory protein Sak189ofS. agalactiae, and DNA-binding regulatory proteins MutR and Rgg of S. pyogenes. The mutR, rgg, andsak189 isogenic mutants were generated. It was shown that inact ivation of transcriptional regulatory genes resulted in the changes in growth kinetics, an ability of the strains to utilize substrates and to grow in the rich and chemically defined media. The Rgg-regulons were identified in three 5. pyogenes strains. The certain differences in the expression of surface and secreted virulence proteins were found in mutant strains compared to the parental strains. Finally, it was demonstrated that inactivation of sakl89, mutR, and rgg genes affected pathogenic properties of streptococci in vitro and in vivo.

A V Dmitriev

Institute of Experimental Medicine of the NorthWest Branch of the Russian Academy of Medical Sciences, Saint-Petersburg

A S Rozhdestvenskaya

Institute of Experimental Medicine of the NorthWest Branch of the Russian Academy of Medical Sciences, Saint-Petersburg

A A Zutkis

Institute of Experimental Medicine of the NorthWest Branch of the Russian Academy of Medical Sciences, Saint-Petersburg

A A Totolian

Institute of Experimental Medicine of the NorthWest Branch of the Russian Academy of Medical Sciences, Saint-Petersburg

  1. Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование. М., 1984.
  2. Areschoug Т., Stalhammar-Carlemalm М., Karlsson I. et al. Streptococcal (3 protein has separate binding sites for human factor H and IgA-Fc // J. Biol. Chem. 2002. Vol. 277. № 15. P. 12642-12648.
  3. Chaussee M.S., Ajdic D., Ferretti J.J. The rgg gene of Stieptococcus pyogenes positively influences extracellular SPE В production // Infect. Immunol. 1999. Vol. 67. №4. P. 1715-1722.
  4. Chaussee M.A., Callegari E.A., Chaussee M.S. Rgg regulates growth phase-dependent expression of proteins associated with secondary metabolism and stress in Streptococcus pyogenes II J. Bacteriol. 2004. Vol. 186. №21. P. 7091-7099.
  5. Chaussee M.S., Somerville G.A., Reitzer L. et al. Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes //J. Bacteriol. 2003. Vol. 185. №20. P. 6016-6024.
  6. Cummings C.A., Bootsma H.J., Relman D.A. et al. Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS // J. Bacteriol. 2006. Vol. 188. №5. P. 1775-1785.
  7. Cunningham M.W. Pathogenesis of group A streptococcal infections // Clin. Microbiol. Rev. 2000. Vol. 13. №3. P. 470-511.
  8. Dmitriev A.V., McDowell E.J., Kappeler K.V et al. The Rgg regulator of Streptococcus pyogenes influences the utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon // J. Bacteriol. 2006. Vol. 188. № 20. P. 7230-7241. 9. Dmitriev A., Yang Y.N., Shen A.D. et al. Adjacent location of ьас gene and two-component regulatory system genes within the putative Streptococcus agalactiae pathogenicity island // Folia Microbiol. 2006. Vol. 51. №3. P. 229-235.
  9. Facklam R.R., Washington J.A. Streptococcus and related catalase-negative gram-positive cocci // Manual of Clinical Microbiology / edited by A. Balows [et al.]. American Society for Microbiology. 1991. P. 238239.
  10. Ferretti J.J., McShan W.M., Ajdic D. Complete genome sequence of an M1 strain of Streptococcus pyogenes II Proc. Natl. Acad. Sci. USA. 2001. Vol. 98. № 8. P. 4658-1663.
  11. Glaser P., Rusniok C, Buchrieser C. et al. Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease // Mol. Microbiol. 2002. Vol. 45. №6. P. 1499-1513.
  12. Heden, L.-O., Frithz E., Lindahl G. Molecular characterization of an IgA receptor from group В streptococci: sequence of the gene, identification of a prolinerich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity // Eur. J. Immunol. 1991. Vol. 21. № 6. P. 1481-1490.
  13. Hendriksen W.T., SilvaN., Bootsma H.J. Regulation of gene expression in Streptococcus pneumoniae by response regulator 09 is strain dependent // J. Bacteriol. 2007. Vol. 189. № 4. P. 1382-1389.
  14. Hynes W.L., Tagg J.R. A simple plate assay for detection of group A streptococcus proteinase // J. Microbiol. Methods. 1985. Vol. 4. P. 25-31.
  15. Keefe G.P. Streptococcus agalactiae mastitis: a review // Can. Vet. J. 1997. Vol. 38. P. 429-437.
  16. Kreikemeyer В., Mclver K.S., Podbielski A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions // Trends Microbiol. 2003. Vol. 11. № 5. P. 224-232.
  17. Lindahl G., Stalhammar-Carlemalm M., Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens // Clin. Microbiol. Rev. 2005. Vol. 18. № 1. P. 102-127.
  18. McShan W.M., Ferretti J.J., Karasawa T. Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes II J. Bacteriol. 2008. Vol. 190. № 23. P. 7773-7785.
  19. Qi E, Chen P., Caufield P. W. Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes //Appl. Environ. Microbiol. 2000. Vol. 66. № 8. P. 3221-3229.
  20. Ribardo D.A., Mclver K.S. Defining the Mga regulon: comparative transcriptome analysis reveals both direct and indirect regulation by Mga in the group A streptococcus // Mol. Microbiol. 2006. Vol. 62. № 2. P. 491-508.
  21. Sanders J.W., Leenhouts K., Burghoorn J. et al. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation // Mol. Microbiol. 1998. Vol. 27. №2. P. 299-310.
  22. Sitkiewicz I., Musser J.M. Expression microarray and mouse virulence analysis of four conserved two-component gene regulatory systems in group A streptococcus // Infect. Immunol. 2006. Vol. 74. № 2. P. 13391351.
  23. Skaugen M., Andersen E.L., Christie V.H. et al. Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in Lactobacillus sakei L45 // Appl. Environ. Microbiol. 2002. Vol. 68. № 2. P. 720-727.
  24. Standish A.J., Stroeher U.H., Paton J.C. The pneumococcal two-component signal transduction system RR/ HK06 regulates CbpA and PspA by two distinct mechanisms // J. Bacteriol. 2007. Vol. 189. № 15. P. 55915600.
  25. Sulavik M.C., Tardif G., Clewell D.B. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis // J. Bacteriol. 1992. Vol. 174. № 11. P. 3577-3586.
  26. Tettelin H., Masignani V, Cieslewicz M.J. et al. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae II Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. № 19. P. 12391-12396.
  27. Tettelin H., Masignani V, Cieslewicz M.J. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial «pan-genome» // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102. № 39. P. 13950-13955.


Abstract - 15


  • There are currently no refbacks.

Copyright (c) 2009 Dmitriev A.V., Rozhdestvenskaya A.S., Zutkis A.A., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.