Open Access Open Access
Restricted Access Subscription Access


Advances in genomic technologies provide for a better understanding of the molecular mechanisms of the development of gliomas. The current classification of gliomas is based on their histological features and does not account of the molecular differences between the subtypes of gliomas. High-throughput methods of molecular analysis make it possible to distinguish such subtypes and to suggest novel prognostic criteria. Key genetic alterations having clinical significance reviewed in the present paper include mutations in the genes CIC, FUBP1, IDH1 /IDH2, and ATRX and in TERT gene promoter and 1p/19q co-deletion. These markers may be used in a more accurate classification of gliomas suitable for clinical assessments and therapeutic choices.

A V Kartashev

Russian Research Centre for Radiology and Surgical Technologies; North-Western State Medical University named after I. I. Mechnikov

Email: а
St. Petersburg, Russia

E I Yakubovich

Russian Research Centre for Radiology and Surgical Technologies

St. Petersburg, Russia

  1. Wesseling P. Classification of Gliomas // Emerging Concepts in Neuro-Oncology.- London: Springer, 2013.- P. 3-20.
  2. CBTRUS 2010 statistical report: Primary brain tumors in the United States, 2004-2006. Central Brain Tumor Registry of the United States. Availiable online: http:// (accessed on 3 February 2010).
  3. Дяченко А. А., Субботина А. В., Измайлов Т. Р. и др. Эпидемиология первичных опухолей головного мозга (обзор литературы) // Вестник Российского научного центра рентгенорадиологии Минздрава России.- 2013.- Т. 1, № 13.- v13/papers/valkov1_v13.html
  4. Louis D. N., Ohgaki H., Wiestler O. D. et al. The 2007 WHO classification of tumours of the central nervous system // Acta neuropathologica.- 2007.- Vol. 114, № 2.- P. 97-109.
  5. Rousseau A., Nutt C. L., Betensky R. A., Iafrate A. J. et al. Expression of oligodendroglial and astrocytic lineage markers in diffuse gliomas: use of YKL-40, ApoE, ASCL1, and NKX2-2 // Journal of Neuropathology & Experimental Neurology.- 2006.- Vol. 65, № 12.- P. 1149-1156.
  6. Ohgaki H., Kleihues P. Genetic pathways to primary and secondary glioblastoma // The American journal of pathology.- 2007.- Vol. 170, № 5.- P. 1445-1453.
  7. Sanson M., Marie Y., Paris S. et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas // Journal of Clinical Oncology.- 2009.- Vol. 27, № 25.- С. 4150-4154.
  8. Shete S., Hosking F. J., Robertson L. B. et al. Genome-wide association study identifies five susceptibility loci for glioma // Nat. Genet.- 2009.- Vol. 41 (8).- P. 899-904.
  9. Stacey S. N., Sulem P., Jonasdottir A. et al. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility // Nat. Genet.- 2011.- Vol. 43 (11).- P. 1098
  10. Wrensch M., Jenkins R. B., Chang J. S. et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility // Nat. Genet.- 2009.- Vol. 41 (8).- P. 905-908.
  11. Das P., Puri T., Jha P. et al. A clinicopathological and molecular analysis of glioblastoma multiforme with long-term survival // Journal of Clinical Neuroscience.- 2011.- Vol. 18, № 1.- P. 66-70.
  12. Van den Bent M. J., Brandes A. A., Taphoorn M. J. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951 // Journal of Clinical Oncology.- 2013.- Vol. 31, № 3.- P. 344-350.
  13. Brennan C., Momota H., Hambardzumyan D. et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations // PloS one.- 2009.- Vol. 4, № 11.- P. 7752.
  14. Cooper L. A. D., Gutman D. A., Long Q. et al. The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas // PloS one.- 2010.- Vol. 5, № 9.- P. 12548.
  15. Frattini V., Trifonov V., Chan J. M. et al. The integrated landscape of driver genomic alterations in glioblastoma // Nature genetics.- 2013.- Vol. 45, № 10.- P. 1141-1149.
  16. McLendon R., Friedman A., Bigner D. Comprehensive genomic characterization defines human glioblastoma genes and core pathways // Nature.- 2008.- Vol. 455, № 7216.- P. 1061-1068.
  17. Noushmehr H., Weisenberger D. J., Diefes K. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma // Cancer cell.- 2010.- Vol. 17, № 5.- P. 510-522.
  18. Yin H., Parsons D. W., Jin G. IDH1 and IDH2 mutations in gliomas // New England Journal of Medicine.- 2009.- Vol. 360, № 8.- P. 765-773.
  19. Verhaak R. G., Valk P. J. Genes predictive of outcome and novel molecular classification schemes in adult acute myeloid leukemia // Cancer Treat Res.- 2010.- Vol. 145.- P. 67-83.
  20. Riemenschneider M. J., Jeuken J. W., Wesseling P., Reifenberger G. Molecular diagnostics of gliomas: state of the art // Acta neuropathologica.- 2010.- Vol. 120, № 5.- P. 567-584.
  21. Anderson M. D., Gilbert M. R. Clinical Discussion of the Management of Anaplastic Oligodendroglioma / Oligoastrocytoma (Both Codeleted and Nondeleted) // Journal of the National Comprehensive Cancer Network.- 2014.- Vol. 12, № 5.- P. 665-672.
  22. Jenkins R. B., Blair H., Ballman K. V. et al. A t (1; 19)(q10; p10) mediates the combined deletions of 1p and 19q and predicts a better pro gnosis of patients with oligodendroglioma // Cancer research.- 2006.- Vol. 66, № 20.- P. 9852-9861.
  23. Eoli M., Bissola L., Bruzzone M. G. et al. Reclassification of oligoastrocytomas by loss of heterozygosity studies // International journal of can cer.- 2006.- Vol. 119, № 1.- P. 84-90.
  24. Bettegowda C., Agrawal N., Jiao Y. et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma // Science.- 2011.- Vol. 333, № 6048.- P. 1453-1455.
  25. Parsons D. W., Jones S., Zhang X. et al. An integrated genomic analysis of human glioblastoma multiforme // Science.- 2008.- Vol. 321, № 5897.- P. 1807-1812.
  26. Ichimura K., Pearson D. M., Kocialkowski S. et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas // Neuro-oncology.- 2009.- Vol. 11, № 4.- P. 341-347.
  27. Dang L., White D. W., Gross S. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate // Nature.- 2009.- Vol. 462, № 7274.- P. 739-744.
  28. Chowdhury R., Yeoh K. K., Tian Y. M. et al. The oncometabolite 2hydroxyglutarate inhibits histone lysine demethylases // EMBO reports.- 2011.- Vol. 12, № 5.- P. 463-469.
  29. Lu C., Ward P. S., Kapoor G. S. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation // Nature.- 2012.- Vol. 483, № 7390.- P. 474-478.
  30. Cohen A. L., Holmen S. L., Colman H. IDH1 and IDH2 mutations in gliomas // Current neurology and neuroscience reports.- 2013.- Vol. 13, № 5.- P. 1-7.
  31. Sanson M., Hosking F. J., Shete S. et al. Chromosome 7p11.2 (EGFR) variation influences glioma risk.// Hum. Mol. Genet.- 2011.- Vol. 20 (14).- P. 2897-2904.
  32. Huse J. T., Aldape K. D. The evolving role of molecular markers in the diagnosis and management of diffuse glioma // Clinical Cancer Research.- 2014.- Vol. 20, № 22.- P. 5601-5611.
  33. Hatanpaa K. J., Burma S., Zhao D., Habib A. A. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance // Neoplasia.- 2010.- Vol. 12, № 9.- P. 675-684.
  34. Killela P. J., Reitman Z. J., Jiao Y. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal // Proceedings of the National Academy of Sciences.- 2013.- Vol. 110, № 15.- P. 6021-6026.
  35. Arita H., Narita Y., Fukushima S. et al. Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss // Acta neuropathologica.- 2013.- Vol. 126, № 2.- P. 267-276.
  36. Jiao Y., Killela P. J., Reitman Z. J. et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas // Oncotarget.- 2012.- Vol. 3, № 7.- P. 709.
  37. Clynes D., Jelinska C., Xella B. et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX // Nature communications.- 2015.- Vol. 6.- P. 1-11.
  38. Ozawa T., Riester M., Cheng Y. K. et al. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma // Cancer cell.- 2014.- Vol. 26, № 2.- P. 288-300.
  39. Suvà M. L. Genetics and epigenetics of gliomas // Swiss Med. Wkly.- 2014.- Vol. 144.- P. 14018.
  40. Hartmann C., Hentschel B., Wick W. et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas // Acta neuropathologica.- 2010.- Vol. 120, № 6.- P. 707-718.
  41. Schittenhelm J., Mittelbronn M., Meyermann R. et al. Confirmation of R132H mutation of isocitrate dehydrogenase 1 as an independent prognostic factor in anaplastic astrocytoma // Acta neuropathologica.- 2011.- Vol. 122, № 5.- P. 651-652.
  42. Brat D. J., Verhaak R. G., Aldape K. D. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas // The New England journal of medicine.- 2015.- Vol. 372, № 26.- P. 2481-2498.
  43. Ceccarelli M., Barthel F. P., Malta T. M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma // Cell.- 2016.- Vol. 164, № 3.- P. 550-563.
  44. Eckel-Passow J. E., Lachance D. H., Molinaro A. M. et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors // New England Journal of Medicine.- 2015.- Vol. 372, № 26.- P. 2499-2508.
  45. Suzuki H., Aoki K., Chiba K. et al. Mutational landscape and clonal architecture in grade II and III gliomas // Nature genetics.- 2015.- Vol. 47, № 5.- P. 458-468.
  46. Wen P. Y., Reardon D. A. Neuro-oncology in 2015: Progress in glioma diagnosis, classification and treatment // Nature Reviews Neurology.- 2016.- Vol. 12.- № 2.- Р. 69-70
  47. Stupp R., Brada M., van den Bent M. J., Tonn J. C., Pentheroudakis G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up // Annals of Oncology.- 2014.- P. 93-101.
  48. Barnholtz-Sloan J. S., Davis F. G., Ilyasova D. et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium // Cancer.- 2008.- Vol. 113.- P. 1953-1968.
  49. Rice T., Decker P. A., Hansen H. M. et al. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk // Nat. Genet.- 2014.- Vol. 46 (7).- P. 731-735.
  50. Walsh L. A., Fang F., Yilmaz E. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype // Nature.- 2012.- Vol. 483, № 7390.- P. 479-483.
  51. Xu W., Yang H., Liu Y. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of -ketoglutarate-dependent dioxygenases // Cancer cell.- 2011.- Vol. 19, № 1.- P. 17-30.


Abstract - 50

PDF (Russian) - 0




  • There are currently no refbacks.

Copyright (c) 2016 Kartashev A.V., Yakubovich E.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies