Effect of cholinotropic agents to change the content of oxygen triplet forms of liver tissue and the ability of the liver homogenate to produce active oxygen in rat cooling

Cover Page

Abstract


The method of polarographic analysis of elements in the tissue solutions of living organisms, and the method of checking the ability of the liver homogenate to produce active forms of oxygen are among the methods for assessing the content of triplet forms of oxygen in the tissue and the ability of the tissue homogenate to initiate lipid peroxidation (POL) after a cold load and administration of cholinotropic agents to rats. In the study, the content of triplet form of oxygen of liver homogenate and the ability of the liver homogenate to produce active oxygen in the period of 3 hour and 5 days cooling of experimental animals were determined. The effect of cholinotropic agent accumulating the endogenous acetylcholine in liver tissue, pharmacological agents that stimulate and block the work of muscarine-sensitive cholinoreactive structures of hepatocyte plasmatic membranes with the assessment of their impact on the content of triplet forms of oxygen, the ability of the liver homogenate to produce active oxygen in supercooling of animals were investigated. Neostigmine on the background of 3 hours cold exposure led to a decrease in the content of triplet forms of oxygen but increased the ability of the liver homogenate to produce active forms of oxygen. Pilocarpine and atropine on the background of cooling animals in 5 days period caused the manifestation of reciprocity as in 3 minutes, so as in 30 minutes of experiment for the determination of triplet forms of oxygen of the liver tissue. Besides pilocarpine and atropine reduced the ability of liver tissue to produce active forms of oxygen. The obtained results indicate the change in the content of triplet forms of oxygen in the liver tissue when pilocarpine and atropine administrated to animals on the backdrop of 5 days cooling. Additionally the results show that the injection of neostigmine to animals on the background of 3 hours cooling promotes the increase of active forms of oxygen.


Full Text

Restricted Access

About the authors

Viktor I Tikhanov

Amur State Medical Academy

Author for correspondence.
Email: tikhanov@yandex.ru

Russian Federation PhD (Pharmacology), Assistant Professor, Dept. of. Hospital Therapy and Clinical Pharmacology

References

  1. Robets J. 2nd, Milne GL. Isoprostane. J Lipid Res. 2009;50(suppl.):219-223.
  2. Caldwell SE, Mills KA. Mechanisms of free radical oxidation of unsaturated lipids. Lipids.1995;30:277-290.
  3. Szori M, Imre G, Viskolcz C, et al. Nonenzymatic pathway of PUFAs oxidation. A first principles study of the reactions of OH radicals with 1,4-pentadiene and arachidonic acid. Journal of Chemical Theory and Computation. 2008;4(9):1472-1479.
  4. Qian SY, Yue GH, Tomer KB, et al. Identification of all classes of spin-trapped carbon — centered radicals in soybean lipoxygenase-dependent lipid peroxidation of omega-6 polyunsaturated fatty acids via LC / ESR, LC / MS, and trandent MS. Free Radical Biology and Medicine. 2003;34(8):1017-1028.
  5. Метелица Д.И. Активация кислорода ферментными системами. — М.: Наука, 1982. [Metelitsa DI. Aktivatsiya kisloroda fermentnymi sistemami. Moscow: Nauka; 1982. (In Russ.)]
  6. Chellan P, Sadler PJ. The elements of life and medicines. Philos Trans A Math Phys Eng Sci. 2015;373:20-37. doi: 10.1098/ rsta.2014.0182.
  7. Babior BM. Superoxide: a two-edged sword. Braz J Med Biol Res. 1997;30(2):141-155.
  8. Menashian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation. 2002;9(3):161-175.
  9. Fleming I, Michaelis VR, Bredenkotter D, et al. Endothelium — derived hyperpolarizing factor synthase (Cytochrom P4502C9) is a functionally significant sourse of reactive oxygen species in coronary arteries. Circ Res. 2001;88:44-51.
  10. Kukreja RC, Kontes HA, Hess ML, et al. PGH-synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH . Circ Res. 1986;59:612-619.
  11. Banersachs BA, Linz JW. Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension. 1997;30(4):934-941.
  12. Fridovich I. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry.1995;54:97-112.
  13. Buerk DG. Mathematical modeling of the interaction between oxygen, nitric oxide and superoxide. Adv Exp Med Biol. 2009;645:7-12.
  14. Тиханов В.И. Влияние центральных и периферических М-, Н-холиномиметиков и М-, Н-холиноблокаторов на формирование холодовой адаптации: Дис. … канд. мед. наук. — Л., 1988. [Tikhanov VI. Vliyanie tsentral’nykh i perifericheskikh M-, N-kholinomimetikov i M-, N-kholinoblokatorov na formirovanie kholodovoi adaptatsii. [dissertation] Leningrad; 1988. (In Russ.)]
  15. Тиханов В.И., Лосев Н.А., Доровских В.А., и др. Триплетная и активная формы кислорода ткани печени экспериментальных животных на фоне охлаждения и введения ацетилхолина в ткань печени in situ // Бюллетень физиологии и патологии дыхания. – 2015. – Вып. 56. – С. 107–112. [Tikhanov VI, Losev NA, Dorovskikh VA, et al. Tripletnaya i aktivnaya formy kisloroda tkani pecheni eksperimental’nykh zhivotnykh na fone okhlazhdeniya i vvedeniya atsetilkholina v tkan’ pecheni in situ. Byulleten’ fiziologii i patologii dykhaniya. 2015;56:107-112. (In Russ.)]
  16. Bramhal M, Florez, Vargas O, Stevens R. Quality of methods reporting in animal models of colitis. Inflamm Bowel Dis. 2015;21(6):1248-1259.
  17. Тиханов В.И., Лосев Н.А., Доровских В.А., и др. Изменение продуктов и субстратных составляющих перекисного окисления липидов в ткани печени на фоне холодовой нагрузки и введения непрямых мускарино-чувствительных и никотино-чувствительных холиномиметиков // Бюллетень физиологии и патологии дыхания. – 2013. – Вып. 50. – С. 61–67. [Tikhanov VI, Losev NA, Dorovskikh VA, et al. Izmenenie produktov i substratnykh sostavlyayushchikh perekisnogo okisleniya lipidov v tkani pecheni na fone kholodovoi nagruzki i vvedenii nepryamykh muskarino-chuvstvitel’nykh i nikotino-chuvstvitel’nykh kholinomimetikov. Byulleten’ fiziologii i patologii dykhaniya. 2013;50:61-67. (In Russ.)]
  18. Epstein CD, Haghenbeck KT. Bedside Assessment of Tissue Oxygen Saturation Monitoring in Critically III Adults: An Integrative Review of the Literature. Crit Care Res Pract. 2014;14:683-709.
  19. Гейеровский Я., Кута Я. Основы полярографии. – М.: Мир, 1965. – 559 с. [Geierovskii Ya, Kuta Ya. Osnovy polyarografii. Moskow: Mir; 1965. (In Russ.)]
  20. Nowell PT, Scott CA, Wilson A. Hydrolysis of neostigmine by plasma cholinesterase. Br J Pharmacol Chemother. 1962;19(3):498-502.
  21. Yu Q — Sh, Holloway HW, Luo W, et al. Long-acting anticholinesterases for myasthenia gravis : synthesis and activities of quaternary phenylcarbamates of neostigmine, pyridostigmine and physostigmine. Bioorg Med Chem. 2010;18(13):46870-46930.
  22. Аничков С.В. Избирательное действие медиаторных средств. Медицина, 1974. — 291 с. [Anichkov SV. Izbiratel’noe deistvie mediatornykh sredstv. Meditsina; 1974. 291 p. (In Russ.)]
  23. Лосев Н.А., Сапронов Н.С., Хныченко Л.К., и др. Фармакология новых холинергических средств (фармакология — клинике). – СПб.: Арт-экспресс, 2015. – 368 с. [Losev NA, Sapronov NS, Khnychenko LK, et al. Farmakologiya novykh kholinergicheskikh sredstv (farmakologiya — klinike). Saint Petersburg: Art-ekspress; 2015. 368 p. (In Russ.)]
  24. Лосев Н.А. Влияние холиномиметиков ареколина и никотина на лимбико-ретикулярный комплекс. Ретикулярная функция биогенных аминов. – Л., ١٩٧٠. [Losev NA. Vliyanie kholinomimetikov arekolina i nikotina na limbiko-retikulyarnyi kompleks. Retikulyarnayafunktsiya biogennykh aminov. Leningrad; 1970. (In Russ.)]
  25. Лосев Н.А. Фармакология – клинике (с учетом взаимодействия М- и Н-холинергических механизмов). Актовая речь на заседании ученого совета Института экспериментальной медицины. – СПб., 2007. – 44 с. [Losev NA. Farmakologiya — klinike (s uchetom vzaimodeistviya M- i N-kholinergicheskikh mekhanizmov). Aktovaya rech’ na zasedanii Uchenogo soveta Instituta Eksperimental’noi Meditsiny. Saint Petersburg; 2007. 44 p. (In Russ.)]
  26. Brown DM, Quinton RM. The assay of anti-acetylcholine agents for antagonism of pilocarpine — induced salivation in rabbits. Br J Pharmacol Chemother. 1957;12(1):53-60.
  27. De Vore NM, Meneely KM, Bart AG, et al. Structural comparison of cytochromes P 450 2A6, 2A13, and 2E1 with pilocarpine. FEBS J. 2012;279(9):1621-1631.
  28. Yaday P, Jadhav SE, Kumar V, et al. Protective efficacy of 2 - PAMCL, atropine and circumin against dichlovos induced toxicity in rats. Inter discip Toxicol. 2012;5(1):1-8.
  29. Тиханов В.И., Лосев Н.А., Доровских В.А., и др. Продукты и субстратные составляющие перекисного окисления липидов ткани печени при введении ацетилхолина in situ // Бюллетень физиологии и патологии дыхания. — 2015. — Вып. 55 . – С. 101–107. [Tikhanov VI, Losev NA, Dorovskikh VA, et al. Produkty i substratnye sostavlyayushchie perekisnogo okisleniya lipidov tkani pecheni pri vvedenii atsetilkholina in situ. Byulleten’ fiziologii i patologii dykhaniya. 2015;55:101-107. (In Russ.)]
  30. Christopher L, Gunduz ShM, Scialis JR, et al. Metabolism and disposition of a selective α 7 nicotinic acethylcholine receptor agonist in humans. American Society for Pharmacology and Experimental therapeutics. 2007;35(7):1188-1195.

Statistics

Views

Abstract - 378

PDF (Russian) - 247

Cited-By


PlumX


Copyright (c) 2016 Tikhanov V.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies