Central mechanisms of conditioned place preference in rats

Cite item


The purpose of the investigation was to clear the significance of dopamine, GABA, opioids and sodium influx ionic currents of the nucleus accumbens neurons for the reinforcing effects of a number of psychotropic drugs (opiates, opioids, psychostimulants) on conditioned place preference (CPP) in rats. The microcannules were implanted into the nucleus accumbens (the extended amygdala system) of the Wistar male rats to inject the drugs studied (1 μg in 1 μl in volume for each injection). The rats were learned CPP of a one of narcogenics during 8 days. Some drugs, lidocain, a blocker of sodium influx ionic currents, antagonists of GABAA receptors bicuculline, D1 dopamine receptors SCH23390, D2 dopamine receptors sulpiride and opioid receptors naloxone, administered intrastructurally into the nucleus accumbens, were used for pharmacological analysis. The majority of the blockers studied decreased or abolished the reinforcing effects of amphetamine. Activation of reinforcement by means of fentanyl was reversed with bicuculline, lidocain and naloxone but did not change with dopamine antagonists (SCH23390 and sulpiride). None of the blockers studied effect on CPP of sodium ethaminal excluding bicuculline which reduced it. At last, the leu-enkephaline effects were reversed with naloxone and SCH23390, but strengthened with bicuculline. Sulpiride and lidocain did not effect on CPP of leu-enkephaline. Therefore, the different mechanisms (GABA-, dopamine- and opioidergic) controlling the positive conditioned reinforcement are collected in the nucleus accumbens.

About the authors

Roman Olegovich Roik

Institute of Experimental Medicine, NWB RAMS

Email: dr.roik@mail.ru
PhD (Pharmacology), Senior Researcher, Anichkov Dept. of Neuropharmacology

Aleksandr Anatolyevich Smirnov

Institute of Experimental Medicine, NWB RAMS

Postgraduate Student (Pharmacology), Anichkov Dept. of Neuropharmacology

Petr Mikhaylovich Vinogradov

Institute of Experimental Medicine, NWB RAMS

Postgraduate Student (Pharmacology), Anichkov Dept. of Neuropharmacology

Aleksandr Mikhaylovich Potapkin

Institute of Experimental Medicine, NWB RAMS

Postgraduate Student (Pharmacology), Anichkov Dept. of Neuropharmacology

Andrey Andreyevich Lebedev

Institute of Experimental Medicine, NWB RAMS

Email: aalebedev-iem@rambler.ru
Doctor of Biol. Sci. (Pharmacology), Professor, Leading Researcher, Anichkov Dept. of Neuropharmacology


  1. Лебедев А. А., Шабанов П. Д. Сопоставление реакции самостимуляции и условного предпочтения места при введении фенамина у крыс // Журн. высш. нервн. деят. - 1992. - Т. 42, № 4. - С. 692-698.
  2. Лебедев А. А., Любимов А. В., Шабанов П. Д. Механизмы срыва, или возобновления потребления психоактивных средств // Обз. по клин. фармакол. и лек. терапии. - 2011. - Т. 9, № 4. - С. 3-17.
  3. Менделевич В. Д., Зобин М. Л. Аддиктивное влечение. - М.: Медпресс-информ, 2012. - 264 с.
  4. Шабанов П. Д. Психофармакология. - СПб.: Н-Л, 2008. - 384 с.
  5. Шабанов П. Д., Лебедев А. А. Угнетение самостимуляции латерального гипоталамуса опиатами и опиоидами, вводимыми в центральное ядро миндалины у крыс // Рос. физиол. журн. им. И. М. Сеченова. - 2011. - Т. 97, № 2. - С. 180-188.
  6. Шабанов П. Д., Лебедев А. А. Участие ГАМК- и дофаминергических механизмов ядра ложа конечной полоски в подкрепляющих эффектах психотропных средств, реализуемых через латеральный гипоталамус // Рос. физиол. журн. им. И. М. Сеченова. - 2011. - Т. 97, № 8. - С. 804-813.
  7. Шабанов П. Д., Лебедев А. А. Нейрохимические механизмы прилежащего ядра, реализующие подкрепляющие эффекты самостимуляции латерального гипоталамуса // Мед. акад. журн. - 2012. - Т. 12, № 2. - С. 68-76.
  8. Шабанов П. Д., Лебедев А. А., Мещеров Ш. К. Дофамин и подкрепляющие системы мозга. - СПб.: Лань, 2002. - 208 с.
  9. Шабанов П. Д., Лебедев А. А., Стрельцов В. Ф. Гормональные механизмы подкрепления. - СПб.: Н-Л, 2008. - 278 с.
  10. Alheid G. F., Heimer L. Theories of basal forebrain organization and the “emotional motor system” // Progr. Brain Res. - 1996. - Vol. 107. - P. 461-484.
  11. Bruijnzeel A. W., Gold M. S. The role of corticotrophin-releasing factor-like peptides in cannabis, nicotine, and alcohol dependence // Brain Res. Rev. - 2005. - Vol. 49. - P. 505-528.
  12. Buffalari D. M., See R. E. Inactivation of the bed nucleus of the stria terminalis in an animal model of relapse: Effects on conditioned cue-induced reinstatement and its enhancement by yohimbine // Psychopharmacology. - 2011. - Vol. 213. - P. 19-23.
  13. Carlezon W. A., Thomas M. J. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis // Neuropharmacology. - 2009. - Vol. 56, Suppl. 1. - P. S122-S132.
  14. Childs E., de Wit H. Amphetamine-induced place preference in humans // Biol. Psychiatry. - 2009. - Vol. 65. - P. 900-904.
  15. Feltenstein M. W., See R. E. The neurocircuitry of addiction: An overview // Brit. J. Pharmacol. - 2008. - Vol. 154. - P. 261-274.
  16. Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory // Neurosci. Biobehav. Rev. - 2010. - Vol. 35, N 2. - P. 129-150.
  17. Jerlhag E., Egecioglu E., Dickson S. L., Engel J. A. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference // Psychopharmacology (Berl.) - 2010. - Vol. 211, N 4. - P. 415-422.
  18. Koob G. F. Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory // Pharmacopsychiatry. - 2009. - Vol. 42, Suppl. 1. - P. S32-S41.
  19. Koob G. F. Neurobiological substrates for the dark side of compulsivity in addiction // Neuropharmacology. - 2009. - Vol. 56, Suppl. 1. - P. 18-31.
  20. König K. P., Klippel A. A. A stereotaxic atlas of the forebrain and lower parts of the brain stem. - Baltimore, 1963. - 214 p.
  21. Shabanov P. D. Lebedev A. A. Involvement of GABA and dopaminergic mechanisms of the bed nucleus of the stria terminalis in the reinforcing effects of psychotropic substances mediated via the lateral hypothalamus // Neurosci. Behav. Physiol. - 2013. - Vol. 43, N 4. - P. 485-491.
  22. Shabanov P. D., Lebedev A. A., Bychkov E. R. Influences of intrauteral ethanol on the maturation of the monoaminergic systems in the developing rat brain // Neurosci. Behav. Physiol. - 2013. - Vol. 43, N 8. - P. 951-956.
  23. Schultz W. Dopamine signals for reward value and risk: basic and recent data. // Behav. Brain Func. - 2010. - Vol. 6, N 24. - P. 2-9.
  24. Waraczynski M., Salemme J., Farral B. Brain stimulation reward is affected by D2 dopamine receptor manipulations in the extended amygdala but not the nucleus accumbens // Behav. Brain Res. - 2010. - Vol. 208, N 2. - P. 626-635.
  25. Wise R. A. Dopamine and reward: the anhedonia hypothesis // Neurotox. Res. - 2008. - Vol. 14, N 2. - P. 169-183.

Copyright (c) 2014 Roik R.O., Smirnov A.A., Vinogradov P.M., Potapkin A.M., Lebedev A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies