Molecular mechanisms of antiatherogenic drugs action

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The purpose of this review is the analysis of the molecular mechanisms of lipid metabolism, their disorders leading to atherosclerosis, and the influence of modern antiatherogenic and antihyperlipidemic agents on atherogenic mechanisms. At the beginning of the review, a general description of atherosclerosis as pathology, its main characteristics and factors is given. The question of the complexity of the treatment of atherosclerosis and the problems arising in connection with the complexity is considered. Current models of the nature of atherosclerotic lesions are described. Next, we consider modern anti-atherosclerotic drugs used in clinical practice. Their nomenclature is given. Their basic biochemical mechanisms and the nature of their action are analyzed. Their negative effects and side effects are also considered. Then, the molecular and genetic mechanisms associated with atherosclerosis are analyzed in detail. The genes associated with lipid metabolism and the formation of atherosclerotic plaques, their expression and regulation are considered. The question of the influence of known anti-atherosclerotic agents on their expression is also covered. A group of azole drugs and their effect on lipid metabolism are considered in the context of the search for new anti-atherogenic drugs. The final part of the review examines the relevance of the search for new anti-atherosclerotic agents and methods for modeling dyslipidemia as a model of conditions that correlate with anti-atherosclerotic vascular lesions. It was concluded that the search for antiatherogenic drugs among imidazole derivatives is promising.

Full Text

Restricted Access

About the authors

Aleksey V. Lizunov

Institute of Experimental Medicine

Author for correspondence.
ORCID iD: 0000-0001-6458-5683
SPIN-code: 8912-3238

post-graduate student

Russian Federation, 12, Academika Pavlova str., Saint Petersburg, 197376

Evgenii R. Bychkov

Institute of Experimental Medicine

ORCID iD: 0000-0002-8911-6805

PhD, Cand. Sci. (Med.)

Russian Federation, 12, Academika Pavlova str., Saint Petersburg, 197376


  1. Akhmedzhanov NM, Nebieridze DV, Safaryan AS, et al. Analysis of hypercholesterolemia prevalence in the outpatient practice (according to the Аrgo study): part I. Rational pharmacotherapy in cardiology. 2015;11(3): 253–260. (In Russ.) doi: 10.20996/1819-6446-2015-11-3-253-260
  2. Belenkov YuN, Sergienko IV, Lyakishev AA, Kukharchuk VV. Statiny v sovremennoi kardiologicheskoi praktike. Moscow: 2010. 64 p. (In Russ.)
  3. Gusev EYu, Zotova NV, Zhuravleva YuA, Chereshnev VA. Physiological and pathogenic role of scavenger receptors in humans. Medical Immunology (Russia). 2020;22(1):7–48. (In Russ.) doi: 10.15789/1563-0625-PAP-1893
  4. Klyueva NN, Okunevich IV, Parfenova NS, Shabanov PD. Correction of experimental dislipoproteinemia by the intranasal administration of an original enzyme preparation. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(2):155–160. (In Russ.) doi: 10.17816/RCF182155-160
  5. Lizunov AV, Okunevich IV, Orlov SV, et al. Effects of сramizol on expression of the apoa1 gene in rats with experimental hyperlipidemia. Biomeditsinskaya Khimiya. 2019;65(5):403–406. (In Russ.) doi: 10.18097/PBMC20196505403
  6. Lizunov AV, Okunevich IV, Lebedev AA, et al. Molecular mechanisms of the cytoprotector cramizol effect in the experimental dyslipidemia model. Biomeditsinskaya Khimiya. 2020;66(4):326–331. (In Russ.) doi: 10.18097/PBMC20206604326
  7. Nasonov EL, Popkova TV. Atherosclerosis: perspectives of anti-inflammatory therapy. Therapeutic archive. 2018;90(5):4–12. (In Russ.) doi: 10.26442/terarkh20189054-12
  8. Okunevich IV. Gipolipidemicheskaya terapiya dislipoproteidemii statinami: ikh rol’ v kompleksnom lechenii ateroskleroza. Reviews on Clinical Pharmacology and Drug Therapy. 2004;3(4): 2–14. (In Russ.)
  9. Okunevich IV, Klyueva NN, Parfenova NS, Belova EV. Lipid-lowering and anti-atherosclerotic activity of the natural original enzyme preparation in the experiment. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(3):79–84. (In Russ.) doi: 10.17816/RCF17379-84
  10. Okunevich IV, Sapronov NS. The analysis of the combined aplication of levopa: the contribution of the hypolipidemic property of l-dopa on the metabolic action in patients with cardiac heart disease. Reviews on Clinical Pharmacology and Drug Therapy. 2011;9(3): 65–70. (In Russ.)
  11. Okunevich IV, Khnychenko LK, Sapronov NS. The hypolipidemic and antiatherosclerotic activity of sympatholytic reserpine: the experimental data. Arterial’naya Gipertenziya. 2007;13(2):136–140. (In Russ.) doi: 10.18705/1607-419X-2007-13-2-136-140
  12. Okunevich IV, Khnychenko LK, Shabanov PD. Influence of hypoxen on the data changing of lipid metabolsim in the experimantal dislipoproteinemia. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(3):26–29. (In Russ). doi: 10.17816/RCF12326-29
  13. Patent RUS № 218.016.8363/2018. Piotrovskii LB, Brusina MA, Nikolaev DN. Sposob polucheniya 1- i 1,2-dialkil(aril)-imidazol-4,5-dikarbonovykh kislot. (In Russ.)
  14. Titova GI, Klyueva NN, Kozhevnikova KA, Klimov AN. Vzaimodeistvie kholesterina s apoproteinom E – argininbogatym belkom lipoproteinov ochen’ nizkoi plotnosti. Biochemistry. 1980;45(1):51–55. (In Russ).
  15. Khnychenko LK, Selina EN, Rodionova OM, et al. Wound healing effect benzosulfonate 1-ethyl-3-methyl-4,5-bis(N-methylcarbamoyl) imidazolium. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(3):229–235 (In Russ.) doi: 10.17816/RCF183229-235
  16. Khnychenko LK, Okunevich IV, Losev NA, Sapronov NS. Hypolipidemic activity of n-cholinergic antagonist benzohexonium in the experiments. Pathological physiology and experimental therapy. 2016;60(1):36–43. (In Russ.) doi: 10.25557/0031-2991.2016.01.%25p
  17. Khorolskaya VG, Gureev AP, Shaforostova EA, et al. The fenofibrate effect on genotoxicity in brain and liver and on the expression of genes regulating fatty acids metabolism of mice. Biomeditsinskaya Khimiya. 2019;65(5):388–397. (In Russ.) doi: 10.18097/PBMC20196505388
  18. Adams SP, Sekhon SS, Wright JM. Lipid-lowering efficacy of rosuvastatin. Cochrane Database Syst Rev. 2014;11:1–217. doi: 10.1002/14651858.CD010254.pub2
  19. Baigent C, Blackwell L, Emberson J. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of datafrom 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–1681. doi: 10.1016/S0140-6736(10)61350-5
  20. Barter PJ, Brandrup-Wognsen G, Palmer MK, Nicholls SJ. Effect of statins on HDL-C: a complex process unrelated to changesin LDL-C: analysis of the VOYAGER Database. J Lip Res. 2010;51(6):1546–1553. doi: 10.1194/jlr.P002816
  21. Bays H. Statin safety: an overview and assessment of the data 2005. Am J Cardiol. 2006;97(8):6–27. doi: 10.1016/j.amjcard.2005.12.006
  22. Bodor ET, Offermanns S. Nicotinic acid: an old drug with a promising future. Br J Pharmacol. 2008;153(1):68–75. doi: 10.1038/sj.bjp.0707528
  23. Bolanos-Garcia VM, Miguel RN. Review: On the structure and function of apolipoproteins: more than a family of lipid-binding proteins. Progr Biophys Mol Biol. 2003;83(1):47–68. doi: 10.1016/S0079-6107(03)00028-2
  24. Burri L, Thoresen GH, Berge RK. The Role of PPAR Activation in Liver and Muscle. PPAR Res. 2010;2010:542359. doi: 10.1155/2010/542359
  25. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to Statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–2397. doi: 10.1056/NEJMoa1410489
  26. Cohen JC, Wang Z, Grundy SM, et al. Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J Clin Invest. 1994;94(6):2377–2384. doi: 10.1172/JCI117603
  27. Collins RG, Velji R, Guevara NV, et al. P-selectin or intercellular adhesion molecule (ICAM-1) deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000;191(1):189–194. doi: 10.1084/jem.191.1.189
  28. Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988;8(1):1–21. doi: 10.1161/01.atv.8.1.1
  29. Debin L, Silver DL. Fenofibrate induces a novel degradation pathway for scavenger receptor B-I independent of PDZK1. J Biol Chem. 2005;280(24):23390–23396. doi: 10.1074/jbc.M502777200
  30. Fitz NF, Tapias V, Cronican AA, et al. Opposing effects of Apoe/Apoa1 double deletion on amyloid-β pathology and cognitive performance in APP mice. Brain. 2015;138(12):3699–3715. doi: 10.1093/brain/awv293
  31. Gabriel DA, Pinilla-Monsalve LJ, Pachajoa H, et al. Novel APOC2 Mutation in a Colombian Patient with Recurrent Hypertriglyceridemic Pancreatitis. Appl Clin Genetics. 2020;13:63–69. doi: 10.2147/TACG.S243148
  32. Garbacz WG, Peipei L, Miller TM, et al. Hepatic Overexpression of CD36 Improves Glycogen Homeostasis and Attenuates High-FatDiet-Induced Hepatic Steatosis and Insulin Resistance. Mol Cell Biol. 2016;36(21):2715–2727. doi: 10.1128/MCB.00138-16
  33. Gibson CM, Korjian S, Tricoci P, et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I trial (ApoA-I event reducing in ischemic syndromes I). Circulation. 2016;134(24):1918–1930. doi: 10.1161/CIRCULATIONAHA.116.025687
  34. Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combi-nation lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–1574. doi: 10.1056/NEJMoa1001282
  35. Gsaller F, Hortschansky P, Furukawa C. Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex. TPLoS Pathogens. 2016;12(12):1–22. doi: 10.1371/journal.ppat.1005775
  36. Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low densitylipoprotein-deficient mice. Mol Cell. 1998;2(2):275–281. doi: 10.1016/s1097-2765(00)80139-2
  37. Gupta AK, Sexton RC, Rudney H. Differential regulation of low density lipoprotein suppression of HMG-CoA reductase activity in cultured cells by inhibitors of cholesterol biosynthesis. J Lipid Res. 1990;31:203–215. doi: 10.1016/S0022-2275(20)43206-7
  38. Jukema JW, Cannon CP, de Craen AJ, et al. The controversies of statin therapy: weighing the evidence. J Amer Coll Cardiol. 2012;60(10):875–881. doi: 10.1016/j.jacc.2012.07.007
  39. Lizunov AV, Okunevich IV, Orlov SV, et al. The Effect of Сramizol on ApoA1 Gene Expression in Rats with Experimental Hyperlipidemia. Biochemistry (Moscow), Suppl Series B: Biomed Chem. 2020;14(5):82–85. doi: 10.18097/PBMC20196505403
  40. Mahley RW, Innerarity TL, Rall SC, Weisgraber KH Jr. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res. 1984;25:1277–1294. doi: 10.1016/S0022-2275(20)34443-6
  41. Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomisedtrials. Lancet. 2012;380(9841) 581–590. doi: 10.1016/S0140-6736(12)60367-5
  42. Mineo C. Lipoprotein receptor signaling in atherosclerosis. Cardiovasc Res. 2020;116(7):1254–1274. doi: 10.1093/cvr/cvz338
  43. Moutzouri E, Kei A, Elisaf MS, Milionis HJ. Management of dyslipidemias with fibrates, alone and in combination with statins: role of delayed-release fenofibric acid. Vasc Health Risk Manag. 2010;6:525–539. doi: 10.2147/vhrm.s5593
  44. Nicholls SJ, Ballantyne CM, Barter PJ, et al. Effect of two intensivestatin regimens on progression of coronary disease. N Engl J Med. 2011;365(22):2078–2087. doi: 10.1056/NEJMoa1110874
  45. Nicholls SJ, Lincoff AM, Barter PJ, et al. Assessment of the clinical effects of cholesteryl ester transfer protein inhibition with evacetrapib in patients at high-risk for vascular outcomes: rationale and design of the ACCELERATE trial. Am Heart J. 2015;170(6):1061–1069. doi: 10.1016/j.ahj.2015.09.007
  46. Ouweneel AB, Zhao Y, Calpe-Berdiel L, et al. Impact of bone marrow ATP-binding cassette transporter A1 defciency on atherogenesis is independent of the presence of the low-density lipoprotein receptor. Atherosclerosis. 2021;319:79–85. doi: 10.1016/j.atherosclerosis.2021.01.001
  47. Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking defining the rules for lipid traders. Int J Biochem Cell Biol. 2004;36(1):39–77. doi: 10.1016/s1357-2725(03)00173-0
  48. DiMarco DM, Fernandez ML. The Regulation of Reverse Cholesterol Transport and Cellular Cholesterol Homeostasis by MicroRNAs. Biology. 2015;4:494–511. doi: 10.3390/biology4030494.
  49. Sabatine MS, Giugliano RP, Keech A, et al. Rationale and design of the Further cardiovascular outcomes Research withPCSK9 Inhibition in subjects with Elevated Risk trial. Am Heart J. 2016;173:94–101. doi: 10.1016/j.ahj.2015.11.015
  50. Schwartz GG, Bessac L, Berdan LG, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168(5):682–689. doi: 10.1016/j.ahj.2014.07.028
  51. Seed M, O’Connor B, Perombelon N, et al. The effect of nicotinic acid and acipimox on lipoprotein(a) concentration and turnover. Atherosclerosis. 1993;101(1):61–68. doi: 10.1016/0021-9150(93)90102-z
  52. Shavva VS, Bogomolova A, Nikitin AA, et al. Insulin-Mediated Downregulation of Apolipoprotein A-I Gene in Human Hepatoma Cell Line HepG2: The Role of Interaction Between FOXO1 and LXRβ Transcription Factors. J Cell Biochem. 2017;118(2):382–396. doi: 10.1002/jcb.25651
  53. Squizzato A, Galli M, Romualdi E, et al. Statins, fibrates, and venous thromboembolism: a meta-analysis. Eur Heart J. 2010;31(10):1248–1256. doi: 10.1093/eurheartj/ehp556
  54. Srivastava RA, Srivastava N. High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem. 2000;209:131–144. doi: 10.1023/a:1007111830472
  55. Tomas M, Lattote G, Senti M, Marrugat J. The Antioxidant Function of High Density Lipoproteins: A New Paradigm in Atherosclerosis. Rev Esp Cardiol. 2004;57(6):557–569. doi: 10.1016/S1885-5857(06)60630-0
  56. Traughber CA, Opoku E, Brubaker G, et al. SR-B1 uptake of HDL promotes prostate cancer proliferation and tumor progression. BioRxiv. 2020. doi: 10.1101/2020.02.24.963454
  57. Wen-Jun S, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: Expression, Molecular Regulation, and Cholesterol Transport Function. J Lipid Res. 2018;59(7):1114–1131. doi: 10.1194/jlr.R083121.
  58. Wiesbauer F, Kaun C, Zorn G, et al. HMG CoA reductase inhibitors affect the fibrinolytic system of human vascular cells in vitro: a comparative study using diferent statins. Br J Pharmacol. 2002;135(1):284–292. doi: 10.1038/sj.bjp.0704454
  59. Wolska A, Dunbarb RL, Freemana LA, et al. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis. 2017;267:49–60. doi: 10.1016/j.atherosclerosis.2017.10.025
  60. Yujiao S, Ling C, Shijie Z, et al. Effects of nanoparticle-mediated delivery of pitavastatin on atherosclerotic plaques in ApoE-knockout mice and THP-1-derived macrophages. J Exp Theurap Med. 2020;19(6):3787–3797. doi: 10.3892/etm.2020.8632
  61. Zysk C, Williams S, Chavarria I, et al. Genetic Variants in Host Protein Disulfide Isomerase 2 (PDIA2) are Associated with Susceptibility to Chlamydia Trachomatis Infection. J Assoc Gen Technol. 2020;46(4):244–249.

Copyright (c) 2021 Lizunov A.V., Bychkov E.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies