DEVELOPMENT OF 3D PRINTING TECHNIQUES INDIVIDUAL SPLINTS FOR BRUSH AND FOREARM IMMOBILIZATION WITH INJURY

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract


3D printing (additive technologies) in recent years is increasingly being used in medicine. The technology for creating physical 3D models from surface scan data and/or anatomical images of non-invasive studies (computed tomography, magnetic resonance imaging) is a multi-stage process: image acquisition, digital model creation, support system construction and separation the model into layers, three-dimensional printing and post-processing depending on the 3D printing method. 3D printing of individual splints not possible without close cooperation between doctors and engineers, as it is at the junction of two specialties. The article highlights the issues of testing the methodology for obtaining a digital model and personalized splints made with the help 3D printing for use in the treatment and rehabilitation of military personnel. Using 3D printing to make personalized medical products will improve the quality life patients (6 figs, 1 table, bibliography: 11 refs).

Full Text

Restricted Access

About the authors

S A Peleshok

S. M. Kirov Military Medical Academy of the Russian Defense Ministry

Saint Petersburg, Russia

D A Volov

S. M. Kirov Military Medical Academy of the Russian Defense Ministry

Saint Petersburg, Russia

M V Titova

S. M. Kirov Military Medical Academy of the Russian Defense Ministry

Saint Petersburg, Russia

M I Eliseeva

S. M. Kirov Military Medical Academy of the Russian Defense Ministry

Saint Petersburg, Russia

V N Adamenko

S. M. Kirov Military Medical Academy of the Russian Defense Ministry

Saint Petersburg, Russia

Ya I Nebylitsa

Main Military Medical Department of the Ministry of the Russian Defense Ministry on the base S. M. Kirov Military Medical Academy

Saint Petersburg, Russia

References

  1. Струков В. И., Прохоров М. Д., Елистратов Д. Г. Способ уменьшения сроков иммобилизации при переломах костей. Международный журнал прикладных и фундаментальных исследований. 2013; 9: 124-6 @@ Strukov V. I., Prokhorov M. D., Elistratov D. G. A method of reducing the time of immobilization in bone fractures. International Journal of Applied and Fundamental Research. 2013; 9: 124-6.
  2. Земан М. Техника наложения повязок. СПб.: Питер; 1994. 208 @@ Zeman M. Technique for applying dressings. Saint Petersburg: Piter Publisher; 1994. 208.
  3. Томас Д. Металлические каркасные мобилизационные ортезы для лучезапястного и локтевого суставов. Гений ортопедии. 2016; 1: 28-39 @@ Thomas D. Metal frame mobilisation orthoses for wrist and elbow. Orthopaedic genius. 2016; 1: 28-39.
  4. Пиватова С. С., Хиневич В. Р. Роль Пирогова в период Крымской войны. Материалы I студенческой научно-теоретической конференции «Актуальная медицина». Симферополь; 2018: 520-23 @@ Pivatova S. S., Khinevich V. R. The role of Pirogov during the Crimean War. In: Materialy I studencheskoy nauchno-teoreticheskoy konferentsii «Aktual›naya meditsina» (Materials of the I student scientific-theoretical conference “Actual Medicine”). Simferopol; 2018: 520-23.
  5. Каплан А. В. Повреждения костей и суставов. М.: Медицина; 1979. 568 @@ Kaplan A. V. Damage to bones and joints. Moscow: Meditsina Publisher; 1979. 568.
  6. Свербиненко Л. П., Волошина Н. В., Вальданова Н. А., Шварева Т. И., Романенко И. М. Кожные поражения, обусловленные неадекватной местной терапией. Украинский мед. альманах. 2012; 15 (3): 181-2 @@ Sverbynenko L. P., Voloshyna N. V., Valdanova N. A., Shvareva T. I., Romanenko I. M. Skin manifestations caused by nonadequate local therapy. Ukrainian med. almanac. 2012; 15 (3): 181-2.
  7. Рушай А. К., Климовицкий Ф. В., Лисунов С. В., Солоницин Е. А. Возможные пути улучшения результатов консервативного лечения больных с переломом дистального метаэпифиза лучевой кости. Медицинский алфавит. 2016; 18 (2): 46-8 @@ Rushay A. K., Klimovitsky F. V., Lisunov S. V., Solonitsin E. A. Possible ways to improving results of conservative treatment of patients with fracture of distal metaepiphysis of radius. Medical alphabet. 2016; 18 (2): 46-8.
  8. McDaid C., Fayter D., Booth A., O’Connor J., Rodriguez-Lopez R., McCaughan D., Bowers R., Iglesias C. P., Lalor S., O’Connor R. J., Phillips M., Ramdharry G. Systematic review of the evidence on orthotic devices for the management of knee instability related to neuromuscular and central nervous system disorders. BMJ Open. 2017; 9 (7): e015927. doi: 10.1136/bmjopen-2017-015927
  9. Нагибович О. А., Свистов Д. В., Пелешок С. А., Коровин А. Е., Городков Е. В. Применение технологии 3D-печати в медицине. Клин. патофизиол. 2017; 3: 14-22 @@ Nagibovich O. A., Svistov D. V., Peleshok S. A., Korovin A. E., Gorodkov E. V. Application of 3D-printing technology in medicine. Clin. Pathophysiol. 2017; 3: 14-22.
  10. Горбатов Р. О., Казаков А. А. Разработка технологии создания индивидуальных ортезов для иммобилизации суставов верхней конечности с помощью 3D-печати. Вестн. Волгоградского государственного мед. университета. 2018; 3 (67): 124-28 @@ Gorbatov R. O., Kazakov A. A. Development of technology of creation of individual orthoses for the immobilization of joints of the top extremity by means of the 3D press. Bull. of Volgograd state med. university. 2018; 3 (67): 124-28.
  11. Fitzpatrick A. P., Mohanned M. I., Collins P. K., Gibson I. Design of a patient specific, 3D printed arm cast. KnE Engineering. 2017: 135-42.

Statistics

Views

Abstract - 17

PDF (Russian) - 6

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2019 Военно-медицинская академия имени С.М.Кирова

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies