The efficiency of molecular markers of the SKr suppressor gene that determines the crossability of common wheat with rye

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Among the genes involved in the control of crossing between common wheat and rye, the dominant suppressor SKr (Suppressor of crossability) having the major effect on inhibiting crossability is the most studied. DNA-markers have been developed for this gene. There are cases of successful application of some of them in wheat breeding, but there is practically no information about their diagnostic efficiency in screening of ex situ collections.

MATERIALS AND METHODS: To evaluate the effectiveness of SKr markers Xcfb341, TGlc2, gene12 и gene13 to identify forms with high crossability with rye, we studied 103 bread wheat accessions from the VIR collection with different seed set (0–93%) after pollinated with rye.

RESULTS: Efficiency in detection crossable forms (upper 15%) was demonstrated by markers Xcfb341, TGlc2 and gene12. No significant allele-trait association was found for gene13 marker. Ten haplotypes were identified based on four markers. Five haplotypes were revealed for accessions from China, while two of them were associated with “high crossability”. Eleven accessions including the line L6-HSR were heterogenic in markers. For this line the relationship of diagnostic fragments with the crossability level observed in the field has been experimentally confirmed.

CONCLUSIONS: The SKr gene markers studied can be used for accessions searching at ex situ collections that potentially have high crossability with rye, for controlling the retention of recessive skr alleles when regenerating seed accessions, as well as in breeding programs.

Full Text

Restricted Access

About the authors

Igor V. Porotnikov

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Author for correspondence.
Email: i.v.porotnikov@gmail.com
ORCID iD: 0000-0001-5841-8803
SPIN-code: 9010-0859
Scopus Author ID: 57219994008

Junior Research Associate

Russian Federation, Saint Petersburg

Valentina P. Puykkenen

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: tina7@yandex.ru
Scopus Author ID: 57211942307

Senior Research Associate

Russian Federation, Saint Petersburg

Olga Yu. Antonova

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: olgaant326@mail.ru
ORCID iD: 0000-0001-8334-8069
SPIN-code: 9255-6449
Scopus Author ID: 23391684100

Cand. Sci. (Med.), Head of laboratory of Molecular breeding and DNA-genotyping

Russian Federation, Saint Petersburg

Olga P. Mitrofanova

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: o.mitrofanova@vir.nw.ru
ORCID iD: 0000-0002-9171-2964
Scopus Author ID: 6602647964

Dr. Sci. (Med.), Main Research Associate

Russian Federation, Saint Petersburg

References

  1. Mujeeb-Kazi A, Kazi AG, Dundas I, et al. Genetic diversity for wheat improvement as a conduit to food security. Adv Agron. 2013;122(4):179–257. doi: 10.1016/B978-0-12-417187-9.00004-8
  2. Moskal K, Kowalik S, Podyma W, et al. The Pros and Cons of rye chromatin introgression into wheat genome. Agronomy. 2021;11(3):456. doi: 10.3390/agronomy11030456
  3. Lein A. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Zeitschrift für Induktive Abstammungs und Vererbungslehre. 1943;81(1):28–61. (In German). doi: 10.1007/BF01847441
  4. Lange W, Wojciechowska B. The crossing of common wheat (Triticum aestivum L.) with cultivated rye (Secale cereale L.). I. Crossability, pollen grain germination and pollen tube growth. Euphytica. 1976;25(1):609–620. doi: 10.1007/BF00041598
  5. Zeven AC. Crossability percentages of some 1400 bread wheat varieties and lines with rye. Euphytica. 1987;36(1):299–319. doi: 10.1007/BF00730677
  6. Bouguennec A, Lesage VS, Gateau I, et al. Transfer of recessive skr crossability trait into well-adapted French wheat cultivar Barok through marker-assisted backcrossing method. Cereal Res Commun. 2018;46(4):604–615. doi: 10.1556/0806.46.2018.043
  7. Pershina LA, Trubacheeva NV. Interspecific incompatibility in the wide hybridization of plants and ways to overcome it. Russian Journal of Genetics: Applied Research. 2017;7(4):358–368. doi: 10.1134/S2079059717040098
  8. Pisarev VE. Amfidiploidy “yarovaya pshenitsa × yarovaya rozh”. Proceedings on Applied Botany, Genetics and Breeding. 1960;32(2):37–55. (In Russ.)
  9. Riley R, Chapman V. The inheritance in wheat of crossability with rye. Genet Res. 1967;9(3):259–267. doi: 10.1017/S0016672300010569
  10. Rigin BV. Skreshchivaemost’ pshenitsy s rozh’yu. Proceedings on Applied Botany, Genetics and Breeding. 1976;58(1):12–34. (In Russ.)
  11. Krolow KD. Untersuchungen über die Kreuzbarkeit zwischen Weizen and Roggen. Z. Pflanzenzüchtung. 1970;64:44–72. (In German)
  12. Laugerotte J, Baumann U, Sourdille P. Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives. Plant Biotechnol J. 2022;20(5):812–832. doi: 10.1111/pbi.13784
  13. Tixier MH, Sourdille P, Charmet G, et al. Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet. 1998;97(7):1076–1082. doi: 10.1007/s001220050994
  14. Alfares W, Bouguennec A, Balfourier F, et al. Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics. 2009;183(2):469–481. doi: 10.1534/genetics.109.107706
  15. Qureshi N, Bariana H, Forrest K, et al. Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat. Theor Appl Genet. 2017;130(3): 495–504. doi: 10.1007/s00122-016-2829-5
  16. Ruud AK, Windju S, Belova T, et al. Mapping of SnTox3 – Snn3 as a major determinant of field susceptibility to Septoria nodorum leaf blotch in the SHA3/CBRD × Naxos population. Theor Appl Genet. 2017;130(7):1361–1374. doi: 10.1007/s00122-017-2893-5
  17. Bertin I, Fish L, Foote TN, et al. Development of consistently crossable wheat genotypes for alien wheat gene transfer through fine-mapping of the Kr1 locus. Theor Appl Genet. 2009;119(8): 1371–1381. doi: 10.1007/s00122-009-1141-z.
  18. Rekhmetulin RM. Ispol’zovanie form myagkoi pshenitsy AM 808 i MA 808 v skreshchivanii s rozh’yu. Doklady VASKHNIL. 1988;9:7–10. (In Russ.)
  19. Surikov IM, Kissel’ NI. Nasledovanie khoroshei skreshchivaemosti ozimoi pshenitsy s rozh’yu. Cytology and genetics. 1980;14(4):71–73. (In Russ.)
  20. Pyukkenen VP. Kollektsiya myagkoi pshenitsy po priznaku khoroshei skreshchivaemosti s rozh’yu. Geneticheskie resursy kul’turnykh rastenii v XXI veke: sostoyanie, problemy, perspektivy. Proceedings of the II Vavilov’s international conference. 2007 Nov 26–30; Saint Petersburg. Saint Petersburg: VIR, 2007. P. 585–588. (In Russ.)
  21. Rekhmetulin RM. Skreshchivaemost’ Argentinskikh sortov yarovoi myagkoi pshenitsy s diploidnoi i tetraploidnoi rozh’yu. Sbornik nauchnykh trudov po prikladnoi botanike, genetike i selektsii. 1987;111:77–81. (In Russ.)
  22. Rui M, Zheng DS, Fan L. The crossability percentages of 96 bread wheat landraces and cultivars from Japan with rye. Euphytica. 1995;92(3):301–306. doi: 10.1007/BF00037112
  23. Rubets VS. Biologicheskie osobennosti tritikale kak osnova sovershenstvovaniya selektsionnogo protsessa [dissertation]. Moscow: RGAU-MSKhA im. K.A. Timiryazeva, 2016. (In Russ.)
  24. Merezhko AF, Erokhin LM, Yudin AE. Ehffektivnyi metod opyleniya zernovykh kul’tur: metodicheskie ukazaniya. Leningrad: VNIIR im. N.I. Vavilova, 1973. (In Russ.)
  25. Antonova OYu, Klimenko NS, Rybakov DA, et al. SSR analysis of modern Russian potato varieties using DNA samples of nomenclatural standards. Plant Biotechnology and Breeding. 2020;3(4):77–96. (In Russ.) doi: 10.30901/2658-6266-2020-4-o2
  26. Zaitsev GN. Matematicheskaya statistika v ehksperimental’noi botanike. Metodika biometricheskikh raschetov. Moscow: Nauka, 1963. 356 p. (In Russ.)
  27. Martynov S, Dobrotvorskaya T, Dobrotvorskiy D. Genetic Resources Information System for Wheat and Triticale. GRIS [Internet]. 2016 [cited: 2022 Feb 9]. Available from: http://wheatpedigree.net

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Incidence (%) of Xcfb341, TGlc2, gene12, and gene13 alleles in the soft wheat genotypes studied. For TGlc2 and gene13, the alleles detected in all genotypes are not given

Download (134KB)
3. Fig. 2. Diversity of amplified DNA fragments detected using Xcfb341 (a) and gene12 (b) markers in the soft wheat genotypes studied. 1, 2 - Chinese Spring; 3, 4 - Khludovskaya; 5 - Punjab Tipe 8A; 6 - Akadaruma; 7, 8 - k-34883; 9 - Siberian Yartsevskaya (p-1); 10 - negative control (H2O); 11 - Red Star; 12 - Bage; 13, 14 - k-42052 (p-1, 2); 15 - Punjab Tipe 8A; 16 - L16-HSR. M - molecular weight marker 100 bp + 1.5 Kb (SibEnzyme)

Download (151KB)
4. Fig. 3. Diversity of amplified DNA fragments detected using TGlc2 (a) and gene13 (b) markers in the soft wheat genotypes studied. 1 - negative control (H2O); 2 - Courtot; 3 - L42-HSR; 4 - Chinese Spring; 5 - Moro of Sind (p-2); 6 - Akadaruma; 7 - Nemchinovskaya 24; 8 - Punjab Tipe 8A; 9 - Siberian Yartsevskaya (p-1)

Download (113KB)
5. Fig. 4. Distribution of 114 studied genotypes with different haplotypes depending on crossing with rye

Download (123KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies