Features of chromosome behavior in meiosis in the common wheat lines containing genetic material of tetraploid wheat species

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


The study of the chromosome behavior in meiosis of hybrid lines obtained on the base of crossing of common wheat with tetraploid wheat species showed that introgression of alien genetic material into common wheat genome had no negative effect on its meiotic stability. The Number of defective cells was small, not only at the metaphase I stage, but also on the final stage of tetrads. Variation relative to the level of cytological stability between the studied lines is the consequence of differences in the number and localization of the introgression fragments of the genomes of tetraploid wheat in the hybrid genome. The influence of the cytoplasm on the formation of the karyotype of introgression lines of wheat was found.

Full Text

Restricted Access

About the authors

Ol’ga Aleksandrovna Orlovskaya

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: O.Orlovskaya@igc.bas-net.by
leading scientist, Ph.D., laboratory of ecological genetics and biotechnology

Irina Nikolaevna Leonova

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: leonova@bionet.nsc.ru
senior scientist, Ph.D., laboratory of plant molecular genetics and cytogenetics

Elena Artemovna Salina

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: salina@bionet.nsc.ru
heard of laboratory, Doctor in Biological Science, professor

Lyubov’ Vladimirovna Khotyleva

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: L.Khotyleva@igc.bas-net.by
head scientist, academician, laboratory of ecological genetics and biotechnology

References

  1. Абугалиева С. И., Волкова Л. А., Ермекбаев К. А. Туруспеков Е. К. (2012) Генотипирование коммерческих сортов яровой мягкой пшеницы Казахстана с использованием микросателлитных ДНК-маркеров. Биотехнология. Теория и практика. № 2: С. 35-45.
  2. Гордеева Е. И., Леонова И. Н., Калинина Н. П. с соавт. (2009) Сравнительный цитологический и молекулярный анализ интрогрессивных линий мягкой пшеницы, содержащих генетический материал Triticum timopheevii Zhuk. Генетика. Т. 45 (12): С. 1616-1626.
  3. Корень Л. В., Орловская О. А., Хотылева Л. В. (2011) Генетический анализ формирования хозяйственно-ценных признаков у отдаленных гибридов пшеницы. Весці НАН Беларусі. Сер. біял. навук. № 4: С. 35-40.
  4. Леонова И. Н., Бадаева Е. Д., Орловская О. А. с соавт. (2013) Сравнительная характеристика гибридных линий Triticum aestivum/Triticum durum и Triticum aestivum/Triticum dicoccum по геномному составу и устойчивости к грибным болезням в различных экологических условиях. Генетика. Т. 49 (11): С. 1276-1283.
  5. Леонова И. Н., Добровольская О. Б., Каминская Л. Н. с соавт. (2005) Молекулярный анализ линий тритикале, содержащих различные системы Vrn генов, с помощью микросателлиных маркеров и гибридизации in situ. Генетика. Т. 41 (9): С. 1236-1243.
  6. Орловская О. А., Корень Л. В., Хотылева Л. В. (2011) Морфологический анализ гибридов пшеницы, созданных посредством отдаленной гибридизации в трибе Triticeae. Весці НАН Беларусі. Сер. біял. навук. № 3: С. 29-33.
  7. Пшеницы мира (1987) Под ред. В. Ф. Дорофеева. Л.: Агропромиздат.
  8. Таврин Э. В. (1989) Аллополиплоидия и формообразование пшеницы. Тр. по прикл. ботанике, генетике и селекции. Т. 128: С. 45-52.
  9. Тимонова Е. М., Леонова И. Н., Белан И. А. с соавт. (2012) Влияние отдельных участков хромосом Triticum timopheevii на формироваение устойчивости к болезням и количественные признаки мягкой пшеницы. Вавиловский журнал генетики и селекции. Т. 16 (1): С. 142-159.
  10. Хлесткина Е. К., Салина Е. А., Шумный В. К. (2004) Генотипирование отечественных сортов мягкой пшеницы с использованием микросателлитных (SSR) маркеров. Сельскохозяйственная биология. № 5: С. 44-51.
  11. Akfirat F. S., Uncuoglu A. A. (2013) Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR markers. Biochem. Genet. V. 51: P. 223-229.
  12. Ganal M. W., Röder M. S. (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney R. K. and Tuberosa R., editor. Genomics assisted Crop Improvement: Springer; p. 1-24.
  13. Hajar R., Hodgkin Т. (2007) The use of wild relatives in crop improvement: a surey of development over the last 20 years. Euphytica. V. 156: P. 1-13.
  14. Huang X. Q., Börner A., Röder M. S., Ganal M. W. (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. V. 105: P. 699-707.
  15. Huang X. Q., Cöster H., Ganal M. W., Röder M. S. (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor. Appl. Genet. V. 106: P. 1379-1389.
  16. Khotyleva L., Koren L., Orlovskaya O. (2010) Use of Triticeae tribe species for expanding and enriching genetic resources of Triticum aestivum // 8th International Wheat Conference, Saint Petersburg, P. 101-102.
  17. Landjeva S., Korzun V., Ganeva G. (2006) Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925-2003 using microsatellites. Genet. Resour. Crop Evol. V. 53: P. 1605-1614.
  18. Leonova I., Badaeva E., Orlovskaya O. et al. (2013) Evaluation of genetic diversity of common wheat hybrid lines containing T. durum and T. dicoccum genetic material // The 12th International wheat genetics Symposium, Oasifico Yokohama, Japan, P. 99.
  19. Peng J. H., Bai Y., Haley S. D., Lapitan N. L. V. (2009) Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica. V. 135: P. 95-122.
  20. Somers D. J., Isaac P., Edwards K. (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. V. 109: P. 1105-1114.
  21. You G. X., Zhang X. Y., Wang L. F. (2004) An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: information from 96 random samples with maximized genetic diversity. Mol. Breed. V. 14. - P. 397-406.
  22. Zeng J., Cao W., Hucl P. et al. (2013) Molecular cytogenetic analysis of wheat -Elymus repens introgression lines with resistance to Fusarium head blight. Genome. V. 56 (1): 75-82.
  23. Zhang X. Y., Li C. W., Wang L. F. et al. (2002) An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties I: information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Theor. Appl. Genet. Vol. 106: P. 112-117.

Statistics

Views

Abstract - 462

PDF (Russian) - 313

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2015 Orlovskaya O.A., Leonova I.N., Salina E.A., Khotyleva L.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies