Obtaining of interspecific hybrids for pea introgressive breeding

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Background. Overcoming of reproductive isolation, identification and transfer of agronomic value genes from wild relatives into cultivated pea genomes is an important task for pea introgressive breeding. Materials and methods. Reciprocal hybridization of cultivated pea with wide set of P. fulvum accessions was conducted. Identification of hybrids was carried out with use of biochemical and morphological markers. Identification of unique protein was conducted with use of electrophoretic spectra of mature seeds. Results. Pea interspecific hybrids were obtained in two reciprocal directions of crosses. Cross efficiency in Р. sativum × P. fulvum and P. fulvum × Р. sativum combinations was 36 % and 7 %, respectively. All tested seeds in crosses Р. sativum × P. fulvum were hybrids. Crosses in direction P. fulvum × Р. sativum led to formation of puny seeds restricted in embryo growth. Protein markers of one seed derived in cross P. fulvum × Р. sativum proved its hybrid nature. Morphological markers demonstrated that plant derived from another cross was also a hybrid. Culture of immature embryos was developed for recovering plants in interspecific crosses. Morphogenic calli and regenerated plants were obtained in culture of immature embryos P. fulvum (И592589) × Р. sativum (Aest). Identification of unique protein 7 of P. fulvum was conducted. Inheritance of that protein was proved as monogenic dominant. Conclusion. Efficiency of hybridization in combination P. fulvum × Р. sativum was significantly less in compare to reciprocal one. All products of that cross combination were tested as hybrids. Unique protein 7 of P. fulvum was revealed as a result of mature seed electrophoretic spectra analysis. Inheritance of that protein was determined as monogenic dominant.

Full Text

Restricted Access

About the authors

Sergey Vasilevich Bobkov

All-Russia Research Institute of Legumes and Groat Crops, Doctor of agriculture, senior scientist

Email: svbobkov@gmail.com
head of plant physiology and biochemistry laboratory

Tatyana Nikolaevna Selikhova

All-Russia Research Institute of Legumes and Groat Crops, Doctor of agriculture, senior scientist

Email: tat.selihowa@yandex.ru
Doctor of biology, senior scientist of plant physiology and biochemistry laboratory

References

  1. Бобков С. В., Лазарева Т. Н. (2012) Компонентный состав электрофоретических спектров запасных белков межвидовых гибридов гороха. Генетика. Т. 48 (1): С. 56-61.
  2. Бобков С. В., Уварова О. В. (2010) Растительный белок зернобобовых культур и перспектива получения белковых изолятов. Вестник РАСХН. № 6: С. 83-88.
  3. Богданова В. С., Галиева Э. Р. (2009) Нарушения мейоза как проявление ядерно-цитоплазматической несовместимости при скрещивании подвидов посевного гороха. Генетика. Т. 45 (5): С. 711-716.
  4. Доспехов Б. А. (1985) Методика полевого опыта (с основами статистической обработки результатов исследований). М.: Агропромиздат.
  5. Конарев В. Г. (2000) Идентификация сортов и регистрация генофонда культурных растений по белкам семян. СПб.: ВИР.
  6. Ali S. M., Sharma B., Ambrose M. J. (1994) Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses. Euphytica. V. 73: P. 115-126.
  7. Baranger A. G., Aubert G., Arnau G. et al. (2004) Genetic diversity within Pisum sativum using protein - and PCR based markers. Theorethical and Applied Genetics. V. 108: P. 1309-1321.
  8. Baranyi M., Greilhuber J., Swiecicki W. K. (1996) Genome size in wild Pisum species. Theoretical and Applied Genetics. V. 93: P. 717-721.
  9. Ben-Ze’ev N., Zohary D. (1973) Species relationship in the genus Pisum L. Israel Journal of Botany. V. 22: P. 73-91.
  10. Bobkov S. (2014) Obtaining calli and regenerated plants in anther cultures of pea. Czech Journal of Genetics and Plant Breeding. V. 50 (2): P. 123-129.
  11. Bogdanova V. S., Kosterin O. E. (2007) Hybridization barrier between Pisum fulvum Sibth. et Smith and P. sativum L. is partly due to nuclear-chloroplast incompatibility. Pisum Genetics. V. 39: P. 8-9.
  12. Byrne O. M., Hardie D. C., Khan T. N. et al. (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Australian Journal of Agricultural Research. V. 59: P. 854-862.
  13. Casey R., Domoney C., Nielsen N. C. (1985) Isolation of a cDNA clone for pea (Pisum sativum) seed lipoxygenase. Biochem. J. V. 232: P. 79-85.
  14. Clarke H. J., Wilson J. G., Kuo I., Lulsdorf M. M., Mallikarjuna N., Kuo J., Siddique K. H. M. (2006) Embryo rescue and plant regeneration in vitro of selfed chickpea (Cicer arietinum L.) and its wild annual relatives. Plant Cell, Tissue and Organ Culture. 85: 197-204.
  15. Clement S. L., McPhee K. E., Elberson L. R., Evans M. A. (2009) Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses. Plant Breeding. V. 128: 478-485.
  16. Domoney C., Firmin J. L., Sidebottom C. et al. (1990) Lipoxygenase heterogeneity in Pisum sativum. Planta. V. 181: P. 35-43.
  17. Ellis T. H. N. (2011) Pisum. In: C. Kole (ed.). Wild crop relatives: genomic and breeding resources, legume crops and forages. Berlin Heidelberg: Springer-Verlag; p. 237-248.
  18. Fondevilla S., Cubero J. I., Rubiales D. (2010) Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes. Plant Breeding. V. 130 (2): P. 281-282.
  19. Kosterin O.E, Bogdanova V. S. (2014) Efficient of hand pollination in different pea (Pisum) species and subspecies. Indian J. Genet. V. 74 (1): P. 50-55.
  20. Ochatt S. J., Benabdelmouna A., Marget P. et al. (2004) Overcoming hybridization barriers between pea and some of its wild relatives. Euphytica. V. 137: P. 353-359.
  21. Porta H., Rocha-Sosa M. (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiology. V. 130: P. 15-21.
  22. Shand P. J., Ya H., Pietrasik Z., Wanasundara P. K. J.P. D. (2007) Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chemistry. V. 102: P. 1119-1130.
  23. Smykal P., Kenicer G., Flavell A. J. et al. (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genetic Resources: Characterization and Utilization. V. 9 (1): P. 4-18.
  24. Su C., Oliw E. H. (1998) Manganese lipoxygenase: characterization and purification. J. Biol. Chem. V. 273: P. 13072-13079.
  25. Suvorova G. (2014) Hybridization of cultivated lentil Lens culinaris Medik. and wild species Lens tomentosus Ladizinsky. Czech Journal of Genetics and Plant Breeding. V. 50: 130-134.
  26. Zaytseva O. O., Bogdanova V. S., Kosterin O. E. (2012) Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene. Gene. V. 504: P. 192-202.

Statistics

Views

Abstract - 635

PDF (Russian) - 252

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2015 Bobkov S.V., Selikhova T.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies