Inheritance of acaricide resistance in inbreeding lines of two-spotted spider mite

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background: The two-spotted spider mite is one of the economically important crop pests. Its control has been and still is largely based on the use of acaricides. However, due to its short life cycle and abundant progeny it is able to develop resistance to acaricides very rapidly. The information on mechanisms of resistance is the aim of devising resistance management strategies. Materials and methods: A laboratory-selected susceptible and resistant inbreeding lines of the spider mite Tetranychus urticae Koch. were used to determine toxicological, cross-resistance, biochemical and genetic data. Mortality caused by acaricide in the F1 progeny and backcrosses with F1 females revealed striking differences in the mode of inheritance. Results: The resistance ratio (RR) calculated from the LC50s of selected susceptible and resistant to dimethoate, bifenthrin, abamectin and bromopropylate lines were 1000, 2600, 2000 and 2000-fold, respectively. Resistance to dimethoate is monogenic dominant inheritance associated with a strong increase in isoenzyme carboxylesterase activity and that could be considered as biochemical marker. Mortality caused by selecting by abamectin in the F1 and backcross progeny indicated that the mode of inheritance resistance is dominant digenic and by selecting bifenthrin and bromopropylate was incompletely recessive linked with two main genetic mutations. Conclusion: The biochemical/physiological mechanisms of resistance to acaricides can be categorized as target site insensitivity or regulatory changes in gene expression elevated some enzyme activity that determines the degree viability in arthropods.

Full Text

Restricted Access

About the authors

Oleg Veniaminovich Sundukov

All-Russian institute for plant Protection

PhD, Senior scientist. Laboratory ecotoxicology

Irina Anatolyevna Tulayeva

All-Russian institute for plant Protection

PhD, scientist. Laboratory ecotoxicology

Yevgeniy Aleksandrovich Zubanov

All-Russian institute for plant Protection

PhD, scientist. Laboratory ecotoxicology


  1. Беленький М. Л. (1959) Элементы количественной оценки фармакологического эффекта. Рига: АН ЛССР.
  2. Сундуков О. В. (2012) Этиология острой токсичности инсектоакарицидов и физиологические факторы, определяющие избирательность их действия на членистоногих. СПб.: Наука.
  3. Урбах В. Ю. (1964) Биометрические методы. М.: Наука.
  4. Bass Ch., Field L. M. (2011) Gene amplification and insecticide resistance. Pest Manag. Sci. V. 67(8): P. 886-890.
  5. Bloomquist J. R. (2003) Chloride channels as tools for developing selective insecticides. Arch. Insect Biochem. Physiol. V.54(4): P. 145-156.
  6. Burton M. J., Mellor I. R., Duce I. R. et al. (2011) Differential resistance of insect sodium channels with kdr mutations to deltamethrin and DDT. Insect Biochem. Mol. Biol. V. 41: P. 723-732.
  7. Clark J. M., Scott J. G., Campos F., Bloomquist J. R. (1995) Resistance to avermectins - extent, mechanisms and management implications. Annu. Rev. Entomol. V. 40: P. 1-30.
  8. Cui F., Lin Z., Wang H. et al. (2011) Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects. Insect Biochem. Mol. Biol. V. 41: P. 1-8.
  9. Dermauw W., Ilias A., Riga M. et al. (2012) The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: Implications for acaricide toxicology and novel mutation associaned with abamectin resistance. Insect Biochem. Mol. Biol. V. 42: P. 455-465.
  10. Devonshire A. L., Field L. M. (1991) Gene amplification and insecticide resistance. Annu. Rev. Entomol. V. 36: P. 1-23.
  11. Devorshak C., Roe R. M. (1998) The role of esterases in insecticide resistance. Rev. Toxicol. V. 2: P. 501-537.
  12. Feyereisen R. (2005) Insect cytochrome P450. Compreh. Molec. Insect Sci. V. 5: P. 1-77.
  13. Field L. M., Foster S. P. I. (2002) Amplified esterase genes and their relationship with insecticide resistance mechanisms in English field populations of the aphid, Myzus persicae (Sulzer). Pest Manag. Sci. V. 58(9): P. 889-894.
  14. Goh D. K. S., Anspaugh D. D., Motoyama N. et al. (1995) Isolation and characterization of an insecticide resistant associated esterase in the tobacco budworm Heliothios virescens (F.). Pest. Biochem. Physiol. V. 5: P. 192-204.
  15. Gunning R. V., Moores G. D., Jtwess Ph. et al. (2007) Use of pyrethroid analogues to identity key structural features for enhanced esterase resistance in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Pest Manag. Sci. V. 63 (6): P. 569-575.
  16. Kwon D. H., Yoon K. S., Clark J. M., Lee S. H. (2010) A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch. Insect Mol. Biol. V. 19: P. 583-591.
  17. Leeuwen T. van, Pottelberge S. van, Tirri L. (2005) Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Manag. Sci. V. 61(5): P. 499-507.
  18. Leeuwen T. van, Tirry L. (2007) Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Manag. Sci. V. 63(2): P. 150-156.
  19. Leeuwen T. van, Vontas J., Tsagkarakou A. et al. (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. V. 40: P. 563-572.
  20. Li X. C., Schuler M. A., Berenbaum M. R. (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. V. 52: P. 231-253.
  21. Oakeshott J. G., Claudianos C., Campbell P. M. et al. (2005) Biochemical genetics and genomics of insect esterases. Compreh. Molec. Insect Sci. V. 5: P. 309-382.
  22. Park Y., Lee D., Taylor M. F.J. et al. (2000) A mutation Leu1029 to his in Heliothis virescens F. hscp sodium channel gene associated with a nerve-insensitivity mechanism of resistance to pyrethroid insecticides. Pest. Biochem. Physiol. V. 66: P. 1-8.
  23. Pottelberge S. van., Leeuwen T. van., Nauen R., Tirri L. (2009) Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch. (Acari: Tetranychidae). Bull. Entomol. Res. V. 99(1): P. 23-31.
  24. Scott J. G. (1999) Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. V. 29: P. 757-777.
  25. Shono T. (1985) Pyrethroid resistance: importance of kdr-type mechanism. J. Pest. Sci. V. 10(1): P. 141-146.
  26. Soderlund D. M. (2008) Pyrethroids, knockdown resistance and sodium channels. Pest Manag. Sci. V. 64(6): P. 610-616.
  27. Stumpf N., Nauen R. (2001) Cross-resistance, inheritance and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. V. 94(4): P. 1577-1583.
  28. Šula J., Weyda F. (1983) Esterase polymorphism in several populations of the two-spotted spider mite, Tetranychus urticae Koch. Experientia. V. 39: P. 78-79.
  29. Zhao X., Salgado V. L. (2010) The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides. Pest. Biochem. Physiol. V. 97: P. 153-160.



Abstract - 635

PDF (Russian) - 290


Article Metrics

Metrics Loading ...



Copyright (c) 2014 Sundukov O.V., Tulayeva I.A., Zubanov Y.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies