Genetically modified microorganisms as producers of biologically active compounds

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


In the review the data on use of genetically modified microorganisms as producers of proteins of different organisms are presented. The relative advantages and disadvantages of bacterial and yeast systems for heterologous genes expression are considered.

Full Text

Restricted Access

About the authors

Marina Vladimirovna Padkina

St. Petersburg State University

Email: mpadkina@mail.ru
Dept. Of Genetics and Biotechnology

Elena Viktorovna Sambuk

St. Petersburg State University

Email: esambuk@mail.ru
Dept. Of Genetics and Biotechnology

References

  1. Глумсков В. (2007) Мировой фармацевтический рынок: состояние и тенденции // Рецепт. № 4 (54). С. 9-12.
  2. Кожин С. А., Самсонова М. Г., Самбук Е. В. (1986) Изучение генетического контроля экспрессии генов, контролирующих синтез кислых фосфатаз у дрожжей // Исследования по генетике. Т. 10. С. 41-52.
  3. Мясников А. Н., Смирнов М. Н., Авот А. Я. и др. (1988 а) Рекомбинантная плазмидная ДНК pJDB (MSIL), обеспечивающая синтез интерлейкина-2 человека в клетках дрожжей Saccharomyces cerevisiae, способ ее получения и штамм дрожжей Saccharomyces cerevisiae - продуцент интерлейкина-2 человека. Патент SU № 1770359. Бюл. № 11. 1997.
  4. Мясников А. Н., Смирнов М. Н., Берзинь В. М. и др. (1988 б) Рекомбинантная плазмидная ДНК pJDB (MS105), обеспечивающая синтез человеческого альфа-N-интерферона, способ ее конструирования и штамм дрожжей Saccharomyces cerevisiae - продуцент человеческого альфа-N-интерферона // А. с. SU 1584188 от 19.09.1988 г.
  5. Мясников А. Н., Смирнов М. Н., Свердлов Е. Д. и др. (1989) Рекомбинантная плазмидная ДНК pYGIB, обеспечивающая синтез гамма-интерферон быка в клетках дрожжей Saccharomyces cerevisiae, способ ее получения и штамм дрожжей Saccharomyces cerevisiae - продуцент гамма-интерферона быка // Патент SU № 1660388. Бюл. № 18. 1995.
  6. Обзор рынка биотехнологий в России и оценка перспектив его развития. (2014). Дата обращения 30.03.2015. URL: https: // www.rusventure.ru/ru/programm/analytics/.
  7. Падкина М. В., Парфенова Л. В., Градобоева А. Е. и др. (2010) Синтез гетерологичных интерферонов в клетках дрожжей Pichia pastoris // Прикладная биохимия и микробиология. Т. 46. № 4. С. 448-455.
  8. Падкина М. В., Парфенова Л. В., Самбук Е. В. и др. (1998) Рекомбинантная плазмидная ДНК, обеспечивающая синтез фибробластного интерферона человека клетками дрожжей, способ ее конструирования и штамм дрожжей Saccharomyces cerevisiae - продуцент фибробластного интерферона человека // Патент РФ RU № 2180003. Бюл. № 6. 2002.
  9. Румянцев А. М., Падкина М. В., Самбук Е. В. (2013) Влияние источника азота на экспрессию генов, контролирующих первые этапы утилизации метанола у дрожжей Pichia pastoris // Генетика. Т. 49. № 4. С. 454-460.
  10. Самбук Е. В., Павлова Н. А., Шарыпова Л. А. и др. (1988) Генетико-биохимическое изучение кислых фосфатаз дрожжей. 14. Идентификация и клонирование гена ACP5 // Вестн. Ленингр. ун-та. Сер. 3. Вып. 24. С. 300-307.
  11. Симбирцев А. С. (2013) Достижения и перспективы использования рекомбинантных цитокинов в клинической практике // Медиц. Академич. Журнал. Т. 13.№ 1. С. 7-22.
  12. Ahn J., Hong. J, Park M. et al. (2009) Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter // Appl. Environ. Microbiol. V. 75. P. 3528-3534.
  13. Arico C., Bonnet C., Javaud C. (2013) N-glycosylation humanization for production of therapeutic recombinant glycoproteins in Saccharomyces cerevisiae // Methods Mol. Biol. V. 988. P. 45-57.
  14. Ballou C. E. (1974) Some aspects of the structure, immunochemistry, and genetic control of yeast mannans // Adv. Enzymol. V. 40. P. 239-270.
  15. Bandaranayake A. D., Almo S. C. (2014) Recent advances in mammalian protein production // FEBS Lett. V. 588. P. 253-260.
  16. Barr P. J., Cousens L. S., Lee-Ng C. T. et al. (1988) Expression and processing of biologically active fibroblast growth factors in the yeast Saccharomyces cerevisiae // J. Biol. Chem. V. 263. P. 16471-16478.
  17. Barr P. J., Steimer K. S., Sabin E. A. et al. (1987) Antigenicity and immunogenicity of domains of the human immunodeficiency virus (HIV) envelope polypeptide expressed in the yeast Saccharomyces cerevisiae // Vaccine. V. 5. P. 90-101.
  18. Batard Y., Hehn A., Nedelkina S. et al. (2000) Increasing expression of P450 and P450-redutase proteins from monocots in heterologous systems // Arch. Biochem. Biophys. V. 379. P. 161-169.
  19. Bayne M. L., Applebaum J., Chicchi G. G. et al. (1988) Expression, purification and characterization of recombinant human insulin-like growth factor 1 in yeast // Gene. V. 66. P. 235-244.
  20. Beck A, Reichert J. M. (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering // MAbs. V. 4. P. 419-425.
  21. Berlec A., Strukelj B. (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells // J. Ind. Microbiol. Biotechnol. V. 40. P. 257-274.
  22. Bill R. M. (2014) Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments // Front. Microbiol. V.5. 85. doi: 10.3389/fmicb. 2014. 00085.
  23. Bitter G. A., Egan K. M. (1984) Expression of heterologous genes in Saccharomyces cerevisiae from vectors utilizing the glyceraldehyde-3-phosphate dehydrogenase gene promoter // Gene. V. 32. P. 263-274.
  24. Boer H., Teeri T. T., Koivula A. (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters // Biotechnol. Bioeng. V. 69. P. 486-494.
  25. Bokinsky G., Peralta-Yahya P. P., George A. et al. (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli // Proc. Natl. Acad. Sci. USA. V. 108. P. 19 949-19 954.
  26. Bretthauer R. K., Castellino F. J. (1999) Glycosylation of Pichia pastoris-derived proteins // Biotechnol. Appl. Biochem. V. 30. P. 193-200.
  27. Brodsky J. L., Lawrence J. G., Caplan A. J. (1998) Mutations in the cytosolic DnaJ homologue, YDJ1, delay and compromise the efficient translation of heterologous proteins in yeast // Biochemistry. V. 37. P. 18 045-18 055.
  28. Cadenas E. Biochemistry of oxygen toxicity (1989) // Ann. Rev. Biochem. V. 58. P. 79-110.
  29. Celik E., Calik P. (2012) Production of recombinant proteins by yeast cells // Biotechnol. Adv. V. 30. P. 1108-1118.
  30. Cereghino J. L., Cregg J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris // FEMS Microbiol. Rev. V. 24. P. 45-66.
  31. Chiba Y., Akeboshi H. (2009) Glycan engineering and production of 'humanized' glycoprotein in yeast cells // Biol. Pharm. Bull. V. 32. P. 786-795.
  32. Cohen S. N., Chang A. C., Boyer H. W. et al. (1973) Construction of biologically functional bacterial plasmids in vitro // Proc. Natl. Acad. Sci. USA V. 70. P. 3240-3244.
  33. Couderc R., Baratti J. (1980) Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of alcohol oxidase // Agric. Biol. Chem. V. 44. P. 2279-2289.
  34. Cousens L. S., Shuster J. R., Gallegos C. et al. (1987) High level expression of proinsulin in the yeast Saccharomyces cerevisiae // Gene. V. 61. P. 265-275.
  35. Damasceno L. M., Huang C. J., Batt C. A. (2012) Protein secretion in Pichia pastoris andadvances in protein production // Appl. Microbiol. Biotechnol. V. 93. P. 31-39.
  36. De Pourcq K., De Schutter K., Callewaert N. (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives // Appl. Microbiol. Biotechnol. V. 87. P. 1617-1631.
  37. Demain A. L., Vaishnav P. (2009) Production of recombinant proteins by microbes and higher organisms // Biotechnol. Adv. V. 27. P. 297-306.
  38. Dissing-Olesen L., Thaysen-Andersen M., Meldgaard M. et al. (2008) The function of the human interferon-beta 1a glycan determined in vivo // J. Pharmacol. Exp. Ther. V. 326. P. 338-347.
  39. Doring F., Klapper M., Theis S. et al. (1998) Use of the glyceraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia pastoris // Biochem. Biophys. Res. Commun. V. 250. P. 531-535.
  40. Dumont J., Legrain M., Portetelle D. et al. (1989) High yield synthesis of the bovine leukemia virus (BLV) p24 major internal protein in Saccharomyces cerevisiae // Gene. V. 79. P. 219-226.
  41. Duport C., Spagnoli R., Degryse E. et al. (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast // Nat. Biotechnol. V. 16. P. 186-189.
  42. Eckart M. R., Bussineau C. M. (1996) Quality and authenticity of heterologous proteins synthesis in yeast // Curr. Opin. Biotechnol. 1996. V. 7. P. 525-530.
  43. Erhart E., Hollenberg C. P. (1983) The presence of a defective LEU2 gene in 2 μm DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number // J. Bacteriol. V. 156. P. 625-635.
  44. Estruch F. (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast // FEMS Microbiol. Rev. V. 24. P. 469-486.
  45. Feldman D. E., Frydman J. (2000) Protein folding in vivo: the importance of molecular chaperones // Curr. Opin. Str. Biol. V. 10. P. 26-33.
  46. Ferrer-Miralles N., Domingo-Espin J., Corchero J. L. et al. (2009) Microbial factories for recombinant pharmaceuticals // Microb. Cell Fact. V. 8. P. 17.
  47. Gasser B., Prielhofer R., Marx H. et al. (2013) Pichia pastoris: protein production host and model organism for biomedical research // Future Microbiol. V. 8. P. 191-208.
  48. Gemmill T. R., Trimble R. B. (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species // Biochim. Biophys. Acta. V. 1426. P. 227-237.
  49. Gerngross T. U. (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi // Nature Biotechnology. V. 22. P. 1409-1414.
  50. Global Markets for Bioengineered Protein Drugs 2014. Дата обращения 30.03.2015. URL: http: // www.bccresearch.com/market-research/biotechnology/bioengineered-protein-drugs-report-bio009f.html.
  51. Godon C., Lagniel G., Lee J. et al. (1998) The H2O2 stimulon in Saccharomyces cerevisiae // J. Biol. Chem. V.273. P. 22480-22489.
  52. Goeddel D. V., Kleid D. G., Bolivar F. et al. (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin // Proc. Natl. Acad. Sci. USA. V. 76. P. 106-110.
  53. Goodman M. (2009) Market watch: sales of biologics to show robust growth through to 2013 // Nat. Rev. Drug Discov. V. 8. P. 837.
  54. Guo Z., Sherman F. (1995) 3’-end forming signals of yeast mRNA // Mol. Cell. Biol. V. 15. P. 5983-5990.
  55. Hamilton S. R., Cook W. J., Gomathinayagam S. et al. (2013) Production of sialylated O-linked glycans in Pichia pastoris // Glycobiology. V. 23. P. 1192-1203.
  56. Hamilton S. R., Gerngross T. U. (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast // Curr. Opin. Biotechnol. V. 18. P. 387-392.
  57. Harmsen M. M., Bruyne M. I., Raue H. A. et al. (1996) Overexpression of binding protein and disruption of the PMR1 gene synergitically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast // Appl. Microbiol. Biotechnol. V. 46. P. 365-370.
  58. Hitzeman R. A., Chen C. Y., Hagie F. E. et al. (1983) Expression of hepatitis B virus surface antigen in yeast // Nucl. Acid Res. V. 11. P. 2746-2763.
  59. Hitzeman R. A., Hagie F. E., Levine H. L. et al. (1981) Expression of a human gene for interferon in yeast // Nature. V. 293. P. 717-722.
  60. Hou J., Tyo K. E., Liu Z. et al. (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae // FEMS Yeast Res. V. 12. P. 491-510.
  61. Huang C. J., Lin H., Yang X. (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements // J. Ind. Microbiol. Biotechnol. V. 39. P. 383-399.
  62. Idiris A., Tohda H., Kumagai H. et al. (2010) Engineering of protein secretion in yeast: strategies and impact on protein production // Appl. Microbiol. Biotechnol. V. 86. P. 403-417.
  63. Imperiali B., O’Connor S. (1999) Effect of N-linked glycosylation on glycopeptide and glycoprotein structure // Curr. Opin. Chem. Biol. V. 3. P. 643-649.
  64. Itakura K., Hirose T., Crea R. et al. (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin // Science. V. 198. P. 1056-1063.
  65. Janse B. J., Pretorius I. S. (1995) One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing alpha-amylase, glucoamylase and pullulanase // Appl. Microbiol. Biotechnol. V. 42. P. 878-883.
  66. Johnston M, Carlson M. (1992) Regulation of carbon and phosphate utilization. In: JonesE. W., PringleJ. R., BroachJ. R., editors. The Molecular and Cell Biology of the Yeast Saccharomyces cerevisiae: Gene Expression. N.-Y.: CSHL Press; p.193-280.
  67. Jun H., Jiayi C. (2012) Metabolic engineering of Saccharomyces cerevisiae for increased bioconversion of lignocellulose to ethanol // Indian. J. Microbiol. V. 52. P. 442-448.
  68. Jurgen B., Lin H. Y., Riemschneider S. et al. (2000) Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations // Biotechnol. Bioeng. V. 70. P. 217-224.
  69. Kamionka M. (2011) Engineering of therapeutic proteins production in Escherichia coli // Curr. Pharm. Biotechnol. V. 12. P. 268-274.
  70. Kang H. A., Kim S. J., Choi E. S. et al. (1998) Efficient production of intact human parathyroid hormone in a Saccharomyces cerevisiae mutant deficient in yeast aspartic protease 3 (YAP3) // Appl. Microbiol. Biotechnol. V. 50. P.187-192.
  71. Kerry-Williams S. M., Gilbert S. C., Evans L. R. et al. (1998) Disruption of the Saccharomyces cerevisiae YAP3 gene reduces the proteolytic degradation of secreted recombinant human albumin // Yeast. V. 14. P. 161-169.
  72. Kim M. D., Han K. C., Kang H. A. et al. (2003) Coexpression of BiP increased antithrombotic hirudin production in recombinant Saccharomyces cerevisiae // J. Biotechnol. V. 101. P. 81-87.
  73. Kramer R. A., DeChiara T. M., Schaber M. D. et al. (1984) Regulated expression of a human interferon gene in yeast: control by phosphate concentration or temperature // Proc. Natl. Acad. Sci. USA. V. 81. P. 367-370.
  74. Kurosawa K., Hosaka T., Tamehiro N. et al. (2006) Improvement of alpha-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168 // Appl. Environ. Microb. V. 72. P. 71-77.
  75. Kyriakopoulos S., Kontoravdi C. (2013) Analysis of the landscape of biologically-derived pharmaceuticals in Europe: dominant production systems, molecule types on the rise and approval trends // Eur. J. Pharm. Sci. V. 48. P. 428-441.
  76. Lee F. W., Silva N. A. (1996) Application of Ty1 for cloned gene insertion: amplification of large regulated expression cassette in Saccharomyces cerevisiae // Appl. Microbiol. Biotechnol. V. 44. P. 620-623.
  77. Lin-Cereghino G. P., Godfrey L., de la Cruz B. J. et al. (2006) Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris // Mol Cell Biol. V. 26. P. 883-897.
  78. Liu L., Liu Y., Shin H. D. et al. (2013) Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology // Appl. Microbiol. Biotechnol. V. 97. P. 6113-6127.
  79. Lohr D. (1997) Nucleosome transactions on the promoters of the yeast GAL and PHO genes // J. Biol. Chem. V. 272. P. 26 795-26 798.
  80. Lopes T. S., Klootwijk J., Veenstra A. E. et al. (1989) High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression // Gene. V. 79. P. 199-206.
  81. Lopez N., Halladay J., Walter W. et al. (1999) SSB, encoding a ribosome-associated chaperone, is coordinately regulated with ribosomal protein genes // J. Bacteriol. V. 181. P. 3136-3143.
  82. Macauley-Patrick, S., Fazenda M. L., McNeil B. et al. (2005) Heterologous protein production using the Pichia pastoris expression system // Yeast. V. 22. P. 249-270.
  83. Makrides S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli // Microbiol. Rev. V. 60. P. 512-538.
  84. Martegani E., Brambilla L., Porro D. et al. (1993) Alteration of cell population structure due to cell lysis in Saccharomyces cerevisiae cells overexpressing the GAL4 gene // Yeast. V. 9. P. 575-582.
  85. Mattanovich D., Branduardi P., Dato L. et al. (2012) Recombinant protein production in yeasts // Methods Mol. Biol. V. 824. P. 329-358.
  86. Mergulhao F. J., Summers D. K., Monteiro G. A. (2005) Recombinant protein secretion in Escherichia coli // Biotechnol. Adv. V. 23. P. 177-202.
  87. Miyanohara A., Toh-e A., Nozaki C. et al. (1983) Expression of hepatitis B surface antigen in yeast // Proc. Natl. Acad. Sci. USA. V. 80. P. 1-5.
  88. Moore P. A., Sagliocco F. A., Wood R. M. et al. (1991) Yeast glycolytic mRNAs are differentially regulated // Mol. Cell Biol. V. 11. P. 5330-5337.
  89. Murashima K., Chen C-L., Kosugi A. et al. (2002) Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparation of active recombinant cellulosomes // J. Bacteriol. V. 184. P. 76-81.
  90. Murasugi A. (2010) Secretory expression of human protein in the yeast Pichia pastoris by controlled fermentor culture // Recent Pat. Biotechnol. V. 4 (2). P. 153-166.
  91. Murby M., Uhlen M., Stahl S. (1996) Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli // Protein Expression Purif. V. 7. P. 129-136.
  92. Niforou K., Cheimonidou C., Trougakos I. P. (2014) Molecular chaperones and proteostasis regulation during redox imbalance // Redox Biol. V. 2. P. 323-332.
  93. Nonaka G., Ishikawa T., Liu T. T. et al. (2000) Genetic analysis of growth inhibition of yeast cells caused by expression of Aspergillus oryzae RNAse T1 // Biosci. Biotechnol. Biochem. V. 64. P. 2152-2158.
  94. Oshima Y. (1982) Regulatory circuits for gene expression: the metabolism of galactose and phosphate. In: In: Jones E. W., Pringle J. R., Broach J. R., editors. The Molecular Biology of the yeast Saccharomyces cerevisiae: Metabolism and Gene Expression. N.-Y.: CSHL Press. P. 159-180.
  95. Payne T., Finnis C., Evans L. R. et al. (2008) Modulation of chaperone gene expression in mutagenized Saccharomyces cerevisiae strains developed for recombinant human albumin production results in increased production of multiple heterologous proteins // Appl. Environ. Microbiol. V. 74. P. 7759-7766.
  96. Porro D., Gasser B., Fossati T. et al. (2011) Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems? // Appl. Microbiol. Biotechnol. V. 89. P. 939-948.
  97. Porro D., Lotti M., Martegani E. et al. (1992) Enhanced expression of heterologous proteins by the use of a superinducible vector in budding yeast // Appl. Microbiol. Biotechnol. V. 36. P. 655-658.
  98. Robinson A. S., Hines V., Wittrup K. D. (1994) Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae // Bio/Technol. V. 12. P. 381-384.
  99. Romanos M. A., Scorer C. A., Clare J. J. (1992) Foreign gene expression in yeast // Yeast. V. 8. P. 423-488.
  100. Rumjantsev A. M., Bondareva O. V. , Padkina M. V. , Sambuk E. V. (2014) Effect of Nitrogen Source and Inorganic Phosphate Concentration on Methanol Utilization and PEX Genes Expression in Pichia pastoris. Scientific World Journal. V. 2014:743615. http: // dx.doi.org/10.1155/2014/743615.
  101. Sabin E. A., Lee-Ng C. T., Shuster J. et al. (1989) High-level expression and in vivo processing of chimeric ubiquitin fusion proteins in Saccharomyces cerevisiae // Bio/Technol. V. 7. P. 705-709.
  102. Schaber M. D., De Chiara T. M., Kramer R. A. (1986) Yeast vector for production of interferon // Meth. Enzymol. V. 119. P. 416-423.
  103. Schultz L. D., Hofmann K. J., Mylin L. M. et al. (1987) Regulated overproduction of the GAL4 gene product greatly increases expression from galactose-inducible promoters on multi-copy expression vectors in yeast. // Gene. V. 61. P. 123-133.
  104. Sears I. B., O’Connor J., Rossanese O. W. et al. (1998) A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris // Yeast. V. 14. P. 783-790.
  105. Shen S., Sulter G., Jeffries T. W. et al. (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris // Gene. V. 216. P. 93-102.
  106. Smith J. D., Tang B. C., Robinson A. S. (2004) Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast // Biotechnol. Bioeng. 2004. V. 85. P. 340-350.
  107. Sudbery P. E. (1996) The expression of recombinant proteins in yeast // Curr. Opin. Biotechnol. V. 7. P. 517-524.
  108. Svaren J., Horz W. (1997) Transcription factor vs nucleosomes: regulation of the PHO5 promoter in yeast // Trends Biochem. Sci. V. 22. P. 93-97.
  109. Terpe K. (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems // Appl. Microbiol. Biotechnol. V. 72. P. 211-222.
  110. The M. J. (1989) Human insulin: DNA technology's first drug // Am. J. Hosp. Pharm. V. 46 (11 Suppl 2). S9-11.
  111. Thim L., Hansen M. T., Norris K. et al. (1986) Secretion and processing of insulin precursors in yeast // Proc. Natl. Acad. Sci. USA V. 83. P. 6766-6770.
  112. Thomas J. G., Ayling A., Baneyx F. (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. To fold or to refold // Appl. Biochem. Biotechnol. V. 66. P. 197-238.
  113. Toh-e A., Kakimoto S., Oshima Y. (1975) Genes coding for the structure of the acid phosphatase in Saccharomyces cerevisiae // Mol. Gen. Genet. V. 143. P. 65-70.
  114. Trachtulec Z., Forejt J. (1999) Transcription and RNA processing of mammalian genes in Saccharomyces cerevisiae // Nucl. Acid Res. V. 27. P. 526-531.
  115. Ueda Y., Toh-e A., Oshima Y. (1975) Isolation and characterization of recessive, constitutive mutations for repressible acid phosphatase synthesis in Saccharomyces cerevisiae // J. Bacteriol. V. 122. P. 911-920.
  116. Umebayashi K., Hirata A., Horiuchi H. et al. (1999) Unfolded protein response-induced BiP/Kar2p production protects cell growth against accumulation of misfolded protein aggregates in the yeast endoplasmic reticulum // Eur. J. Cell Biol. V. 78. P. 726-738.
  117. Valenzuela P. Medina A., Rutter W. J. et al. (1982) Synthesis and assembly of hepatitis B virus surface antigen particles in yeast // Nature. V. 298. P. 347-360.
  118. Vanz A. L., Lünsdorf H., Adnan A. et al. (2012) Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes // Microb. Cell Fact. V. 11. P.103. doi: 10.1186/1475-2859-11-103.
  119. Vassileva A., Chugh D. A., Swaminathan S. et al. (2001) Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter // J. Biotechnol. V. 88. P. 21-35.
  120. Vervecken W., Kaigorodov V., Callewaert N. etal. (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris // Appl. Environ. Microbiol. V. 70. P. 2639-2646.
  121. Vogl T., Glieder A. (2013) Regulation of Pichia pastoris promoters and its consequences for protein production // New Biotechnol. V. 30. P. 385-404.
  122. Walsh G. (2014) Biopharmaceutical benchmarks 2014 // Nat. Biotechnol. V. 32 (10). P. 992-1000.
  123. Waterham H. R., Digan M. E., Koutz P. J. et al. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter // Gene. V. 186. P. 37-44.
  124. Westers L., Westers H., Quax W. J. (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism // Biochim. Biophys. Acta. V. 1694. P. 299-310.
  125. Widmann M., Christen P. (2000) Comparison of folding rates of homologous prokaryotic and eukaryotic proteins // J. Biol. Chem. V. 275. P. 18619-18622.
  126. Withers-Martinez C., Carpenter E. P., Hackett F. et al. (1999) PCR-based gene synthesis as an efficient approach for expression of the A+T-rich malaria genome // Protein Eng. V. 12. P. 1113-1120.
  127. Wong H. C., Chang S. (1986) Identification of a positive retroregulator that stabilizes mRNAs in bacteria // Proc. Natl. Acad. Sci. USA V. 83. P. 3233-3237.
  128. Yadava A., Ockenhouse C. F. (2003) Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems // Infect. Immun. V. 71. P. 4961-4969.
  129. Yan Y., Huang L., Koffas M. A. (2007) Biosynthesis of 5-deoxyflavanones in microorganisms // Biotechnol. J. V. 2. P. 1250-1262.
  130. Zapun A., Jakob C. A., Thomas D. Y. et al. (1999) Protein folding in specialized compartment: the endoplasmic reticulum // Structure. V. 7. P.173-182.
  131. Zhu J. (2012). Mammalian cell protein expression for biopharmaceutical production // Biotechnol. Adv. 2012. V. 30. P. 1158-1170.
  132. Zurbriggen B., Kuhne A. B., Kallio P. et al. (1989) Controlled expression of heterologous cytochrome P450e cDNA in Saccharomyces cerevisiae. II. Development of cultivation process for heterologous cytochrome P450e production // J. Biotechnol. V. 9. P. 273-286.

Statistics

Views

Abstract - 792

PDF (Russian) - 299

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2015 Padkina M.V., Sambuk E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies