Researching the mechanisms of gene РНО3 regulation de pending on nitrogen source in medium in yeast Sacharomyces cere visiae

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Delicate regulation of gene expression is performed through transcriptional factors competition for promoters that provides punctual cell response to environmental changes. Gene PHO3 of yeast S. cerevisiae encodes the constitutive acid phosphatase. In this work we researched genetic control of the gene PHO3 expression in response to nitrogen source in medium. PHO3 expression level was proved to decrease while yeast using poor nitrogen source like urea. Possible regulatory mechanisms for gene PHO3 were revealed involving repressor of nitrogen regulated genes Gzf3p and ubiquitin ligase Rsp5p

About the authors

Vladimir A Savinov

Saint-Petersburg State University., Saint-Petersburg, RF

Email: vova.savinoff@gmail.com 7-9, Universitetskaya nab., St.Petersburg, 199034, Russia

Anastasia I Fizikova

Saint-Petersburg State University., Saint-Petersburg, RF

Email: vova.savinoff@gmail.com 7-9, Universitetskaya nab., St.Petersburg, 199034, Russia

Andrey M Rumyantsev

Saint-Petersburg State University., Saint-Petersburg, RF

Email: rumyantsev-am@mail.ru

Elena V Sambuk

Saint-Petersburg State University, Saint-Petersburg, RF

Email: esambuk@mail.ru

References

  1. Гланц С., 1999. Медико-биологическая статистика. М.: Практика. 460 с.
  2. Захаров И. А., Кожин С. А., Кожина Т. Н., Федорова И. В., 1984. Сборник методик по генетике дрожжей-сахаромицетов. Л.: Наука. 144 c.
  3. Маниатис Т., Фрич Э., Сэмбрук Дж, 1984. Методы генетической инженерии. Молекулярное клонирование. М.: Мир. 480 с.
  4. Останин К. В., Смирнова Т. М., Мясников А. Н. и др., 1988. Векторы экспрессии на основе промоторов генов PHO3 и PHO5 дрожжей Saccharomyces cerevisiae: конструирование, сравнительная оценка эффективности, использование для суперпродукции фосфорибозиламиноимидазолкарбоксилазы // Биополимеры и клетка. № 4. С. 259-266.
  5. Парфенова Л. В., Смирнов М. Н., Самбук Е. В., Падкина М. В., 2002. Продукция β-интерферона че- ловека в дрожжах Saccharomyces cerevisiae ведет к снижению активности цитохром-С-оксидазы // Биотехнология. № 6. С. 23-30.
  6. Попова Ю. Г., Падкина М. В., Самбук Е. В., 2000. Влияние мутаций в генах РНО85 и РНО4 на утилизацию пролина у дрожжей Saccharomyces cerevisiae // Генетика. Т. 36. № 12. С. 1622-1628.
  7. Самбук Е. В., 2005. Генетические механизмы реализации закона лимитирующего фактора у дрожжей Saccharomyces cerevisiae // Жур. общ. биол. Т. 66. № 4. С. 310-325.
  8. Bajwa W., Meyhack B., Rudolph H. et al., 1984. Structural of two tandemly repeated acid phosphatase genes in yeast // Nucleic Acids Res. Vol. 12. № 20. P. 7721-7739.
  9. Bradley P. H., Brauer M. J., Rabinowitz J. D., Troyanskaya O. G., 2009. Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae // PLoS Comput Biol. Vol. 5. № 1. P. 1-15.
  10. Cardenas M. E., Cutler N. S., Lorenz M. C. et al., 1999. The TOR signaling cascade regulates gene expression in response to nutrients // Genes Dev. Vol. 13. № 24. P. 3271-3279.
  11. Coffman J. A., Rai R., Cooper T. G. et al., 1995. Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae // J. of Bacteriol. Vol. 177. № 23. P. 6910- 6918.
  12. Cooper T. G., Ferguson D., Rai R. et al., 1990. The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae // J. Bacteriol. Vol. 172, № 2. P. 1014-1018.
  13. Costanzo M., Baryshnikova A., Bellay J. et al., 2010. The genetic landscape of a cell // Science. V 327. № 5964. P. 425-431.
  14. Crespo J. L., Helliwell S. B., Wiederkehr C. et al., 2004. NPR1 kinase and RSP5-BUL1/2 ubiquitin ligase control GLN3-dependent transcription in Saccharomyces cerevisiae // J. Biol. Chem. Vol. 279. № 36. Р. 37512- 37517.
  15. Deed N. K., van Vuuren H. J. J., Gardner R. C., 2011. Effects of nitrogen catabolite repression and di-ammonium phosphate addition during wine fermentation by a commercial strain of S. Cerevisiae // Appl. Microbiol. Biotechnol. № 89. P. 1537-1549.
  16. Gancedo J. M., 1998. Yeast carbon catabolite repression // Microbiol. Mol. Biol. Rev. Vol. 62. № 2. P. 334-361.
  17. Guthrie C., Fink G. R., 1991. Guide to yeast genetics and molecular biology. Academic Press. Vol. 194. 933 p.
  18. Harreman M., Taschner M., Sigurdsson S. et al., 2009. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation // Proc. Natl. Acad. Sci. USA. Vol. 06. № 49. P. 20705-20710.
  19. Johnston M., Carlson M., 1992. Regulation of carbon and phosphate utilization // Mol. Cell. Biol. оf the Y. Sacch.: Gene Expression. Vol. 2. P. 193-255.
  20. Li M., Petteys B. J., McClure J. M. et al., 2010. Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1 // Mol. and Cell. Biol. Vol. 30. № 13. P. 3329-3341.
  21. Magasanik B., Kaiser C. A., 2002. Nitrogen regulation in Saccharomyces cerevisiae // Gene. № 290. Р. 1-18.
  22. Matsuyama A., Shirai A., Yoshida M., 2008. A series of promoters for constitutive expression of heterologous genes in fission yeast // Yeast. Vol. 25. № 5. P. 371-376.
  23. Meselson M., Yuan Y., 1968. DNA restriction enzyme from E. coli // Nature. Vol. 217. P. 1110-1114.
  24. Meyhack B., Bajwa W., Rudolph H. et al., 1982. Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences // EMBO J. Vol. 1, № 6. P. 675-680.
  25. Nosaka K., 1990. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates // Biochim. Biophys. Acta. № 1037. P. 147-154.
  26. Nosaka K., Kaneko Y., Nishimura H. et al., 1993. Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae // J. of Biol. Chem. Vol. 268. № 23. P. 17440-17447.
  27. Ogawa N., DeRisi J., Brown P. O., 2000. New components of system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis // Mol. Biol. Cell. Vol. 11. № 12. P. 4309-4321.
  28. Okabayashi K., Oi H., Hirabayashi K. et al., 1990. Albumin gene-containing plasmid, transformant carrying same, production of such transformant and production of albumin. Green Cross. EP0399455.
  29. Peng J., Schwartz D., Elias J.E. et al., 2003. A proteomic approach to understanding protein ubiquitination // Nat. Biotechnol. Vol. 21. № 8. P. 921-926.
  30. Pina B., Fernandez-Larrea J., Garcia-Reyro N. et al., 2003. The different (sur)faces of Rap1p // Mol. Gen. Genomics. № 268. P. 791-798.
  31. Saccharomyces Genome Database, URL: http://www. yeastgenome.org
  32. Scherens B., Feller A., Vierendeels F. et al., 2006. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term // FEMS Yeast Res. № 6. P. 777-791.
  33. Singleton C. K., 1997. Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae // Gene. № 199. P. 111-121.
  34. Stanbrough M., Rowen D. W., Magasanik B., 1995. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes // Biochem. Vol. 92. P. 9450-9454.
  35. Staschke K. A., Dey S., Zaborske J. M. et al., 2010. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast // The J. of Biol. Chem. Vol. 285. № 22. P. 16893-16911.
  36. Tate J. J., Rai R., Cooper T. G., 2006. Ammonia-specific regulation of Gln3 localization in Saccharomyces cerevisiae by protein kinase Nrp1 // J. Biol. Chem. Vol. 281. № 38. P. 28460-28469.
  37. Vignols F., Brehelin C., Surdin-Kerjan Y. et al., 2005. A yeast two-hybrid knockout strain to explore thioredoxin- interacting proteins in vivo // PNAS. Vol. 102. № 46. P. 16729-16734.

Statistics

Views

Abstract - 372

PDF (Russian) - 262

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2011 Savinov V.A., Fizikova A.I., Rumyantsev A.M., Sambuk E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies