Genetically modified organisms authorized for cultivation and breeding in Russia

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Summary: In July 2016 the State Duma adopted the Federal Law “On Amendments to Certain Legislative Acts of the Russian Federation in terms of improving the state regulation in the field of genetic engineering” (03.07.2016 N 358-FL). This review is devoted to the analysis of Article 4 of the Act, namely the discussion of what GMOs may be authorized for cultivation and breeding in Russia.

Full Text

Restricted Access

About the authors

Tatiana V Matveeva

St. Petersburg State University

Author for correspondence.

Russian Federation

Department of Genetics and Biotechnology

Mahboobe Azarakhsh

St. Petersburg State University


Russian Federation

Department of Genetics and Biotechnology


  1. Федеральный закон «О внесении изменений в отдельные законодательные акты Российской Федерации в части совершенствования государственного регулирования в области генно-инженерной деятельности» (03.07.2016 № 358-ФЗ) [Federal Law “On Amendments to Certain Legislative Acts of the Russian Federation in terms of improving the state regulation in the field of genetic engineering” (03.07.2016 No 358-FL (In Russ.)].
  2. Chilton MD, Drummond MH, Merio DJ, et al. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell. 1977;11(2):26371. doi: 10.1016/0092-8674(77)90043-5.
  3. Chilton MD, Tepfer D, Petit A, et al. Agrobacterium rhizogenes insert T-DNA into the genome of the host plant root cells. Nature. 1982;295(5848):432-434. doi: 10.1038/295432a0.
  4. Burr T, Otten L. Crown gall of grape: biology and disease management. Annu Rev Phytopathol. 1999;37(1):53-80. doi: 10.1146/annurev.phyto.37.1.53.
  5. White FF, Garfinkel DJ, Huffman GA, et al Sequence homologous to Agrobacterium rhizogenes TDNA in the genomes of uninfected plants. Nature. 1983;301:348-350. doi: 10.1038/301348a0.
  6. Matveeva TV, Bogomaz DI, Pavlova OA, et al. Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Mol Plant Microbe Interact. 2012;25:15421551. doi: 10.1094/MPMI-07-12-0169-R.
  7. Kyndt T, Quispe D, Zhai H, et al. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proc Nat Acad Sci USA. 2015;112(18):5844-5849. doi: 10.1073/pnas.1419685112.
  8. Schouten H, Krens F, Jacobsen E. Do cisgenic plants warrant less stringent oversight? Nature Biotechnology. 2006;24(7):753. doi: 10.1038/nbt0706-753. PMID16841052.
  9. Jochemsen H. Toetsen en begrenzen: Een ethische en politieke beoordeling van de moderne biotechnologie. Buijten & Schipperheijn. 2000. 263 p.
  10. Matzke MA, Matzke AJM. Planting the seeds of a new paradigm. PLoS Biol. 2004;2(5):e133. doi: 10.1371/journal.pbio.0020133. PMID15138502.
  11. Bernstein E, Caudy A, Hammond S, Hannon G. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363-6. doi: 10.1038/35053110. PMID11201747.
  12. Sun G. MicroRNAs and their diverse functions in plants. Plant Mol Biol. 2012Sep;80(1):17-36. doi: 10.1007/s11103-011-9817-6. Epub 2011 Aug 27.
  13. Holmquist G, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res. 2006;114(2):96-125. doi: 10.1159/000093326. PMID16825762.
  14. Verdel A, Jia S, Gerber S, et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science. 2004;303(5658):672-6. doi: 10.1126/science.1093686. PMID14704433.
  15. Матвеева Т.В. Не совсем трансгенные растения // Вестник защиты растений. – 2016. – Т. 3. – № 89. – С. 106–108. [Matveeva TV. Not quite transgenic plants. Plant Protection Bulletin. 2016;3(89):106-108 (In Russ.)]
  16. Belinda M. First Fruit: The creation of the flavr savr tomato and the birth of biotech foods by McGraw-Hill companies. 2001. 269 p. ISBN10: 0071360565; ISBN13: 9780071360562.
  17. Carter N. Petition for Determination of Nonregulated Status: Arctic™ Apple (Malus x domestica) Events GD743 and GS784. United States Department of Agriculture — Animal and Plant Health Inspection Service. 2012. 163 p.
  18. Clark P, Habig J, Ye J, Collinge. Petition for Determination of Non-regulated Status for Innate Potatoes with Late Blight Resistance, Low Acrylamide Potential, Reduced Black Spot, and Lowered Reducing Sugars: Russet Burbank Event W8, United States Department of Agriculture — Animal and Plant Health Inspection Service. 2014. 199 p.
  19. https://www. Дата последнего обращения 10.12.16.
  20. Власов В.В., Медведев С.П., Закиян С.М. «Редакторы» геномов. От цинковых пальцев до CRISPR // Наука из первых рук. – 2014. – Т. 56. – № 2. – С. 44–53. [Vlasov VV, Medvedev SP, Zakian SM Genomes “Editors”. From zinc finger to CRISPR. Science at first hand. 2014;56(2):44-53. (In Russ.)]
  21. Sontheimer EJ, Barrangou R. The bacterial origins of the CRISPR genome-editing revolution. Human Gene Therapy. 2015;26(7):413-424. doi: 10.1089/hum.2015.091. PMID26078042.
  22. Bhaya D, Davison M, Rodolphe B. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics. 2011;45:273-297. doi: 10.1146/annurev-genet-110410-132430.
  23. Garneau JE, Dupuis ME, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468:67-71. doi: 10.1038/nature09523.
  24. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Review of Genetics. 2010;11:181-190.
  25. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167-170. doi: 10.1038/nrg2749.
  26. van der Oost J, Jore MM, Westra ER, et al. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences. 2009;34:401-407.
  27. Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annual Review of Microbiology. 2010;64:475-493.
  28. Mojica FJ, Diez-Villasensor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005:174-82 doi: 10.1007/s00239-004-0046-3.
  29. Hou Zhonggang, Zhang Yan, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Nat Acad Sci USA. 2013;110(39):15644-15649. doi: 10.1073/pnas.1313587110. PMID23940360.
  30. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America. PNAS. 2012;109:E2579-2586. doi: 10.1073/pnas.1208507109.
  31. Jiang Wenyan, Maniv I, Arain F, et al. Dealing with the Evolutionary Downside of CRISPR Immunity: Bacteria and Beneficial Plasmids. PLoS Genetics. 2013;9(9): e1003844. doi: 10.1371/journal.pgen.1003844. PMID24086164.
  32. Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. eLife. 2013;2:e00471. doi: 10.7554/eLife.00471.
  33. Li J, Norville JE, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology. 2013;31:688-691. doi: 10.1038/nbt.2654.
  34. Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9-guided endonuclease. Nature Biotechnology. 2013;31:691-693. doi: 10.1038/nbt.2655.
  35. Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology. 2013;31:686-688. doi: 10.1038/nbt.2650.
  36. Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular Plant. 2013;6:1975-1983. doi: 10.1093/mp/sst119.
  37. Ji X, Zhang H, Zhang Y, Wang Y, Gao C. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants. 2015;1:15144. doi: 10.1038/nplants.2015.144.Xie, K. & Yang, 2013.
  38. Hyun Y, Kim J, Cho SW, et al. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta. 2015Jan;241(1):271-84. doi: 10.1007/s00425-014-2180-5. Epub 2014 Oct 1.
  39. Waltz E. Gene-edited CRISPR mushroom escapes US regulation. A fungus engineered with the CRISPR-Cas9 technique can be cultivated and sold without further oversight. Nature. 2016;532:293.



Abstract - 768

PDF (Russian) - 453




Copyright (c) 2016 Matveeva T.V., Azarakhsh M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies