Lux-biosensors: screening biologically active compounds for genotoxicity

Cover Page


Cite item

Full Text

Abstract

To study the ability of metal salts and pharmacologically active drugs to induce the oxidative stress and SOS response in bacteria, a set of lux-biosensors was used. The sensors were based on three E. coli strains carrying recombinant plasmids with lux-operon fused to the promoters of SoxS (superoxide dismutase), KatG (catalase-peroxidase) and ColD (colicin D) genes. The created biosensors were used to analyze the activity of 47 substances, with 16 of them identified to induce SOS-response and 6 - to induce oxidative stress. The results observed were compared to the previously published data on the mutagenic activity of the same 47 substances evaluated using Ames test. The comparison had shown full coincidence for 42 from 47 substances analyzed. We discuss the possibility to use the lux-based biosensors for the screening of the genetic activity of chemical compounds.

Full Text

ВВЕДЕНИЕ

В генетической токсикологии для выявления и оценки мутагенной активности химических факторов окружающей среды принят поэтапный подход. На первом этапе тестирования (этап скрининга) используются бактериальные тест-системы и клеточные культуры. На втором этапе вещества, показавшие активность на этапе скрининга, тестируются in vivo по способности индуцировать микроядра или хромосомные аберрации в клетках костного мозга мышей или крыс. В случае отсутствия мутагенной активности в клетках костного мозга млекопитающих рекомендована оценка мутагенной активности в других тканях. При этом допускается использование методов проверки на генотоксичность, таких как регистрация внепланового (репаративного) синтеза ДНК, ДНК-аддуктов, фрагментации ДНК в клетках печени, почек, селезенки и других органов [1].

На этапе первичной оценки мутагенной активности химических соединений чаще всего применяют тест Эймса Salmonella/микросомы [2, 3]. Для регистрации мутагенной активности в данном тесте используется набор штаммов S. typhimurium, ауксотрофных по гистидину и ревертирующих к дикому типу в результате индукции обратных мутаций. Штаммы S. typhimurium ТА 1535 и ТА 100 несут мутацию в гене hisG и ревертируют под действием веществ, вызывающих замену пар оснований, тогда как штаммы ТА 1538, ТА 97 и ТА 98 ревертируют в результате сдвига рамки считыва

×

About the authors

Elena V Igonina

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: iev555@ya.ru
Ph.D., research worker, Lab. of ecological genetics Russian Federation

Mariya V Marsova

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: masha_marsova@mail.ru
junior research worker, Laboratory of Bacterial Genetics Russian Federation

Serikbai K Abilev

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: abilev@vigg.ru
Doctor of Biological Sciences, Professor, Deputy Directors Russian Federation

References

  1. Абилев С.К., Глазер В.М. Генетическая токсикология: Итоги и проблемы // Генетика. – 2013. – Т. 49. – Вып. 1. – С. 81–93. [Abilev SK, Glaser VM. Genetic toxicology: finding and challenges. Russian Journal of Genetics. 2013;49(1):81-93. (In Russ.)]. doi: 10.7868/S0016675813010025.
  2. Ames BN, Durston WE, Yamasaki E, Lee FD. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA. 1973a;70(8): 2281-2285. doi: 10.1073/pnas.70.8.2281.
  3. Ames BN, Lee FD, Durston WE. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci USA. 1973b;70(3):782-786. doi: 10.1073/pnas.70.3.782.
  4. Levin DE, Hollstein MC, Christman MF, et al. A new Salmonella tester strain (TA102) with A X T base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci USA. 1982;79(23):7445-7449. doi: 10.1073/pnas.79.23.7445.
  5. Quillardet P, Huisman O, D’Ari R, et al. SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K12 to measure genotoxity. Proc Natl Acad Sci USA. 1982;79(19):5971-5975. doi: 10.1073/pnas.79.19.5971.
  6. Quillardet P, Hofnung M. SOS chromotest: a review. Mutat. Res. 1993;(297):235-279. doi: 10.1016/0165-1110(93)90019-J.
  7. Goerlich O, Quillardet P, Hofnung M. Induction of the SOS response by hydrogen peroxide in various Escherichia coli mutants with altered protection against oxidative DNA damage. J Bacteriol. 1989;171(11):6141-7. doi: 10.1128/jb.171.11.6141-6147.1989.
  8. Müller J, Janz S. Assessment of oxidative DNA damage in the oxyR-deficient SOS chromotest strain Escherichia coli PQ300. Environ Mol Mutagen. 1992;20(4):297-306. doi: 10.1002/em.2850200408.
  9. Müller J, Janz S. Modulation of the H2O2-induced SOS response in Escherichia coli PQ300 by amino acids, metal chelators, antioxidants, and scavengers of reactive oxygen species. Environ Mol Mutagen. 1993;22(3):157-63. doi: 10.1002/em.2850220308.
  10. Реутова Н.В. Мутагенный потенциал тяжелых металлов // Экологическая генетика. – 2015. – Т. 13. – Вып. 3. – С. 70–75. [Reutova NV. Mutagenic potential of some heavy metals. Ekologicheskaya genetika. 2015;13(3):70-75. (In Russ.)]. doi: 10.17816/ecogen13370-75.
  11. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 200512(10):161-1208. doi: 10.2174/0929867053764635.
  12. Сычева Л.П. Оценка мутагенных свойств наноматериалов // Гигиена и санитария. – 2008. – № 6. – С. 26–28. [Sycheva LP. Evaluation of the mutagenic properties of nano-materials. Gigiena i Sanitariia. 2008;(6):26-8. (In Russ.)]
  13. Ghosh M, Manivannan J, Sinha S, et al. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res. 2012;749(1-2):60-69. doi: 10.1016/j.mrgentox.2012.08.007.
  14. Манухов И.В., Котова В.Ю., Мальдов Д.Г., и др. Индукция окислительного стресса и SOS-ответа в бактериях Escherichia coli растительными экстрактами: роль гидроперекисей и эффект синергизма при совместном действии с цисплатиной // Микробиология. – 2008. – Т. 77. – С. 590–597. [Manuchov IV, Kotova VYu, Maldov DG, et al. Induction of oxidative stress and SOS response in Escerichia coli by vegetable extracts: the role of hydroperoxides and the synergistic effect of simultaneous treatmrnt with cisplatinum. Microbiology. 2008;77:590-597. (In Russ.)]. doi: 10.1134/S0026261708050020.
  15. Котова В.Ю., Манухов И.В., Завильгельский Г.Б. Lux-биосенсоры для детекции SOS-ответа, теплового шока и окислительного стресса // Биотехнология. – 2009. – № 6. – С. 16–25. [Kotova VYu, Manuchov IV, Zavigelskiy GB. Lux-biosensors for detection of SOS-response, heat shock and oxidative stress. Biotechnology in Russia. 2009;(6):8-17. (In Russ.)]. doi: 10.1134/S0003683810080089.
  16. Завильгельский Г.Б., Котова В.Ю., Хрульнова С.А., Манухов И.В. Оценка токсического действия наноматериалов на живые организмы // Биотехнология. – 2013. – № 6. – С. 8–17. [Zavigelsky GB, Kotova VYu, Khrul’nova SA, Manukhov IV. Asessment of toxicity of nanomaterials for live organisms. Biotechnology in Russia. 2013;(6):8-17. (In Russ.)]
  17. Котова В.Ю., Рыженкова К.В., Манухов И.В., Завигельский Г.Б. Индуцируемые специфические lux-биосенсоры для детекции антибиотиков: конструирование и основные характеристики // Прикладная биохимия и микробиология. – 2014. – Т. 50. – № 1. – С. 112–117. [Kotova VYu, Ryzhenkova KV, Manuchov IV, Zavigelskiy GB. Inducible specific lux-biosensors for the detection of antibiotics: construction and main parametrs. Prikladnaya Biokhimiya i Microbiologiya. 2014;50(1):112-117. (In Russ.)]. doi: 10.7868/S0555109914010073.
  18. Сазыкина М.А., Чистяков В.А. Мониторинг генотоксичности водной среды: Азово-Донской бассейн: Монография. – Ростов н/Д: Изд-во ЮФУ, 2009. [Sazykina MA, Chistyakov VA. Monitoring genotoxichnosti vodnoy sredi: Azovo-Donskoy basseyn: Monografiya. Rostov n/D: The SFU publishing house. 2009. (In Russ.)]
  19. Vollmer CA, Van Dyk TK. Stress responsive bacteria biosensors as environmental monitors. Adv Microb Physiol. 2004;49:131-174. doi: 10.1016/S0065-2911(04)49003-1.
  20. Bargonetti J, Champeil E, Tomasz M. Differential Toxicity of DNA Adducts of Mitomycin C. Journal of Nucleic Acids. 2010:698960. doi: 10.4061/2010/698960.
  21. McCalla DR. Mutagenicity of nitrofuran derivatives: Review. Environ Mutagen. 1983;(5):745-765. doi: 10.1002/em.2860050512.
  22. Kohda K, Kawazoe Y, Minoura Y, et al. Separation and identification of N4-(guanosin-7-yl)-4-aminoquinoline 1-oxide, a novel nucleic acid adduct of carcinogen 4-nitroquinoline 1-oxide. Carcinogenesis. 1991;12:1523-1525. doi: 10.1093/carcin/12.8.1523.
  23. McCann J, Choi E, Yamasaki E, Ames BN. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA. 1975;72(12):5135-5139. doi: 10.1073/pnas.72.12.5135.
  24. Biaglow JE, Jacobson BE, Nygaard OF. Metabolic reduction of 4-nitroquinoline N-oxide and other radical-producing drugs to oxygen-reactive intermediates. Cancer Res. 1977;37:3306-3313.
  25. De Flora S, Bagnasco M, Serra D, Zanacchi P. Genotoxicity of chromium compounds. A review. Mutat Res. 1990;(238):99-172. doi: 10.1016/0165-1110(90)90007-X.
  26. Фонштейн Л.М., Абилев С.К., Акиньшина Л.П., и др. Изучение мутагенного действия некоторых лекарственных препаратов на индикаторные бактерии // Химико-фармацевтический журнал. – 1978а. – № 1. – С. 39–44. [Fonshteyn LM, Abilev SK, Akin’shina LP, et al. Izuchenie mutagennogo deistviya nekotorykh lekarstvennykh preparatov na indikatornye bakterii. Khimiko-Farmatsevticheskiy Zhurnal. 1978a;(1):39-44. (In Russ.)]
  27. Фонштейн Л.М., Ревазова Ю.А., Золотарева Г.Н., и др. Изучение мутагенной активности диоксидина // Генетика. – 1978б. – Т. 14. – № 5. – С. 900–908. [Fonshteyn LM, Revazova YuA, Zolotareva GN, et al. Izuchenie mutagennoy aktivnosti dioksidina. Russian Journal of Genetics. 1978b:14(5):900-908. (In Russ.)]
  28. Clerch B, Bravo JM, Llagostera M. Analysis of the ciprofloxacin-induced mutations in Salmonella typhimurium. Environ Mol Mutagen. 1996;27(2):110-115. doi: org/10.1002/(SICI)1098-2280(1996)27:2<110::AID-EM6>3.0.CO;2-K.
  29. Ames BN. The detection of chemical mutagens with enteric bacteria. In: A. Hollaender ed. Chemical Mutagens: Principles and Methods for Their Detection. New York: Plenum Press; 1971, Vol. 1. doi: 10.1007/978-1-4615-8966-2_9.
  30. Longley DS, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nature. 2003;(3):330-337. doi: 10.1038/nrc1074.
  31. Ilin A, Nersesyan A. Toxicology of iodine: A mini reviews. Arch Oncol. 2013;21(2):67-71. doi: 10.2298/AOO1302065I.
  32. Norman AA, Hansen LH, Sorensen SJ. Construction of a ColD cda promoter-based SOS-Green Fluorescent Protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ. Microbiol. 2005;71:2338-2346. doi: 10.1128/AEM.71.5.2338-2346.2005.
  33. Фонштейн Л.М., Абилев С.К., Акиньшина Л.П., и др. Исследование генетических эффектов лекарственных веществ и других биологически активных соединений в тестах на мутагенез и ДНК-повреждающее действие // Химико-фармацевтический журнал. – 1982. – № 10. – С. 1163–1167. [Fonshteyn LM, Abilev SK, Akin’shina LP, et al. Investigation of the genetic effects of drugs and other biologically active compounds in tests for mutagenesis and DNA-damaging action. Khimiko-Farmatsevticheskiy Zhurnal. 1982;(10):1163-1167. (In Russ.)]
  34. Arlauskas A, Baker RSU, Bonin AM, et al. Mutagenicity of metal ions in bacteria. Environ Res. 1985;36(2):379-388.
  35. Cesium compounds toxicology reports… Cited 04.03.2016. WEB: http://www.bibra-information.co.uk/downloads/toxicity-profile-for-cesium-compounds-2000.
  36. Marzin DR, Phi HV. Study of the mutagenicity of metal derivatives with Salmonella typhimurium TA102. Mutat Res. 1985;155(1-2):49-51. doi: 10.1016/0165-1218(85)90024-2.
  37. Цефикар. Инструкция по медицинскому применению лекарственного средства. Цитировано 04.03.2016. WEB: http://www.pharmacare.by/ru/rx/100-antibiotics/12-ceficare.
  38. Brambilla G, Mattioli F, Robbiano L, Martelli A. Studies on genotoxicity and carcinogenicity of antibacterial, antiviral, antimalarial and antifungal drugs. Mutagenesis. 2012;27(4):387-413. doi: 10.1093/mutage/ger094.
  39. Diflucan. Cited 04.03.2016. WEB: www.pfaizer.com.
  40. Yajima N, Kondo K, Morita K. Reverse mutation tests in Salmonella typhimurium and chromosomal aberration tests in mammalian cells in culture on fluorinated pyrimidine derivatives. Mutat Res. 1981;88(3):241-54. doi: 10.1016/0165-1218(81)90036-7.
  41. Hannan MA, al-Dakan AA, Hussain SS, Amer MH. Mutagenicity of cisplatin and carboplatin used alone and in combination with four other anticancer drugs. Toxicology. 1989;55(1-2):183-91. doi: 10.1016/0300-483X(89)90185-6.
  42. Colofac MR. Summary of product characteristics… Cited 04.03.2016. WEB: https://www.medicines.org.uk/emc/medicine/2506.
  43. SCCS (Scientific Committee on Consumer Safety). Opinion on bismuth citrate, 12 December 2013.
  44. Brambilla G, Mattioli F, Martelli A. Genotoxic and carcinogenic effects of gastrointestinal drugs. Mutagenesis. 2010;25(4):315-326. doi: 10.1093/mutage/geq02.
  45. Karekar V, Joshi S, Shinde SL. Antimutagenic profile of three antioxidants in the Ames assay and the Drosophila wing spot test. Mutat Res. 2000;468(2):183-94. doi: 10.1016/S1383-5718(00)00055-3.
  46. Miadoková E, Mravcová M, Vlčková V, et al. Antimutagenic and anticlastogenic potential of α-lipoic acid. Biologia. 2002;57(3):351-358.
  47. Мексидол: инструкция по применению и отзывы. Цитировано 04.03.2016. www.health.mail.ru/drug/mexipridol/.
  48. N-Acetyl-L-cysteine for use in foods for particular nutritional uses and in foods for special medical purposes. EFSA Journal. 2003;(21):1-8.
  49. Laidlaw SA, Dietrich MF, Lamtenzan MP, et al. Antimutagenic effects of taurine in a bacterial assay system. Cancer Res. 1989;49(23):6600-6604.
  50. NTP report on the toxicology studies of dicyclohexylcarbodiimide. Natl Toxicol Program Genet Modif Model Rep. 2007; Sep.(9):1-138.
  51. Gorla N, Ovando HG, Larripa I. Chromosomal aberrations in human lymphocytes exposed in vitro to enrofloxacin and ciprofloxacin. Toxicol Lett. 1999;(104):43-48. doi: 10.1016/S0378-4274(98)00230-6.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Luminescence of E. coli MG1655 (pColD–lux) induced by mitomycin C. The exposure time – 50 minutes

Download (29KB)
3. Fig. 2. Luminescence of E. coli MG1655 (pKatG–lux) induced by hydrogen peroxide. Exposure time – 25 minutes

Download (31KB)
4. Fig. 3. Luminescence of E. coli MG1655 (pSoxS–lux) induced by paraquat. Exposure time – 30 minutes

Download (30KB)

Copyright (c) 2016 Igonina E.V., Marsova M.V., Abilev S.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies