Biological profile of the follicular fluid. A pilot study

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: One of the most important research areas in the field of reproductive medicine is the search for biochemical and immunological parameters of oocyte quality and predicting the effectiveness of assisted reproductive technology protocols.

AIM: The aim of this study was to evaluate the expression of follicular fluid soluble human leukocyte antigen-G, human leukocyte antigen-E, human leukocyte antigen-C, progesterone-inducing blocking factor, and relaxin levels in women with reproductive disorders.

MATERIALS AND METHODS: This prospective cohort study included 22 patients undergoing infertility treatment in a superovulation stimulation protocol using gonadotropin-releasing hormone antagonists. The inclusion criteria were age from 25 to 39 years, tubal-peritoneal factor infertility, and voluntary participation informed consent. The levels of soluble human leukocyte antigen-G, human leukocyte antigen-E, human leukocyte antigen-C, progesterone-inducing blocking factor, and relaxin in follicular fluid samples were determined on the day of transvaginal follicle puncture by enzyme immunoassay.

RESULTS: We established an inverse correlation between the expression levels of progesterone-inducing blocking factor and relaxin (r = −0.450) in the follicular fluid, antibodies to thyroperoxidase (r = −0.649), and thyroid-stimulating hormone (r = −0.519). We also found a direct correlation between human leukocyte antigen-E parameters in the follicular fluid, age (r = 0.813) and Body Mass Index (r = 0.866), as well as between human leukocyte antigen-C expression levels and total testosterone (r = 0.960). No data were obtained on any significant correlations between the studied biomarkers and the number of received oocytes.

CONCLUSIONS: In this comprehensive study, we were the first who found the expression levels of five different follicular fluid components, namely, soluble human leukocyte antigen-G, human leukocyte antigen-E, human leukocyte antigen-C, progesterone-inducing blocking factor, and relaxin. Such a complex assessment of the follicular fluid can allow for establishing the quality of the oocyte to predict the onset of pregnancy in an in vitro fertilization protocol.

Full Text

Restricted Access

About the authors

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089
Scopus Author ID: 57189999252
ResearcherId: D-3880-2018

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Margarita O. Shengelia

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: bakleicheva@gmail.com
ORCID iD: 0000-0002-0103-8583
SPIN-code: 7831-2698
Scopus Author ID: 57203248029
ResearcherId: AGN-5365-2022

MD

Russian Federation, Saint Petersburg

Valeriya A. Zagaynova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: zagaynovav.al.52@mail.ru
ORCID iD: 0000-0001-6971-7024
SPIN-code: 7409-4944
Scopus Author ID: 57222615411

MD

Russian Federation, Saint Petersburg

Sergey V. Chepanov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: chepanovsv@gmail.com
ORCID iD: 0000-0001-6087-7152
SPIN-code: 6642-6837
Scopus Author ID: 56399329700
ResearcherId: M-3471-2015

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Evgeniia M. Komarova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: evgmkomarova@gmail.com
ORCID iD: 0000-0002-9988-9879
SPIN-code: 1056-7821

Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450
Scopus Author ID: 56895765600
ResearcherId: P-4357-2017

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Saint Petersburg

References

  1. Ashworth CJ, Toma LM, Hunter MG. Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Philos Trans R Soc Lond B Biol Sci. 2009;364(1534):3351–3361. doi: 10.1098/rstb.2009.0184
  2. Fortune JE. Ovarian follicular growth and development in mammals. Biol Reprod. 1994;50(2):225–232. doi: 10.1095/biolreprod50.2.225
  3. Leroy JL, Vanholder T, Delanghe JR, et al. Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum. Theriogenology. 2004;62(6):1131–1143. doi: 10.1016/j.theriogenology.2003.12.017
  4. Sun Z, Wu H, Lian F, et al. Human follicular fluid metabolomics study of follicular development and oocyte quality. Chromatographia. 2017;80(6):901–909. doi: 10.1007/s10337-017-3290-6
  5. Zakerkish F, Brännström M, Carlsohn E, et al. Proteomic analysis of follicular fluid during human ovulation. Acta Obstet Gynecol Scand. 2020;99(7):917–924. doi: 10.1111/aogs.13805
  6. Poulsen LC, Pla I, Sanchez A, et al. Progressive changes in human follicular fluid composition over the course of ovulation: quantitative proteomic analyses. Mol Cell Endocrinol. 2019;495. doi: 10.1016/j.mce.2019.110522
  7. Niu Z, Ye Y, Xia L, et al. Follicular fluid cytokine composition and oocyte quality of polycystic ovary syndrome patients with metabolic syndrome undergoing in vitro fertilization. Cytokine. 2017;91:180–186. doi: 10.1016/j.cyto.2016.12.020
  8. Bogdanova MA, Vartanova IV, Gzgzyan AM. Ekstrakorporal’noe oplodotvorenie: prakticheskoe rukovodstvo dlya vrachei. Ed. by I.Yu. Kogan. Moscow: GEOTAR-Media; 2021. (In Russ.)
  9. Bakleycheva MO, Bespalova ON, Ivashchenko TE. The role of HLA class I (G, E and C) expression in early reproductive losses. Aku sherstvo i ginekologiya. 2020;(2):30–36. (In Russ.) doi: 10.18565/aig.2020.2.30-36
  10. Hunt JS, Geraghty DE. Soluble HLA-G isoforms: technical deficiencies lead to misinterpretations. Mol Hum Reprod. 2005;11(10):715–717. doi: 10.1093/molehr/gah223
  11. Morandi F, Rouas-Freiss N, Pistoia V. The emerging role of soluble HLA-G in the control of chemotaxis. Cytokine Growth Factor Rev. 2014;25(3):327–335. doi: 10.1016/j.cytogfr.2014.04.004
  12. Ouji-Sageshima N, Yuui K, Nakanishi M, et al. sHLA-G and sHLA-I levels in follicular fluid are not associated with successful implantation. J Reprod Immunol. 2016;113:16–21. doi: 10.1016/j.jri.2015.10.001
  13. Rizzo R, Fuzzi B, Stignani M, et al. Soluble HLA-G molecules in follicular fluid: a tool for oocyte selection in IVF? J Reprod Immunol. 2007;74(1–2):133–142. doi: 10.1016/j.jri.2007.02.005
  14. Shaikly VR, Morrison IE, Taranissi M, et al. Analysis of HLA-G in maternal plasma, follicular fluid, and preimplantation embryos reveal an asymmetric pattern of expression. J Immunol. 2008;180(6):4330–4337. doi: 10.4049/jimmunol.180.6.4330
  15. Jee BC, Suh CS, Kim SH, et al. Soluble human leukocyte antigen G level in fluid from single dominant follicle and the association with oocyte competence. Yonsei Med J. 2011;52(6):967–971. doi: 10.3349/ymj.2011.52.6.967
  16. Vercammen M, Verloes A, Haentjens P, et al. Can soluble human leucocyte antigen-G predict successful pregnancy in assisted reproductive technology? Curr Opin Obstet Gynecol. 2009;21(3):285–290. doi: 10.1097/gco.0b013e32832924cd
  17. Yao YQ, Barlow DH, Sargent IL. Differential expression of alternatively spliced transcripts of HLA-G in human preimplantation embryos and inner cell masses. J Immunol. 2005;175:8379–8385. doi: 10.4049/jimmunol.175.12.8379
  18. Guzeloglu-Kayisli O, Pauli S, Demir H, et al. Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol Hum Reprod. 2008;14:581–588. doi: 10.1093/molehr/gan047
  19. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–461. doi: 10.1038/332459a0
  20. Noci I, Fuzzi B, Rizzo R, et al. Embryonic soluble HLA-G as a marker of developmental potential in embryos. Hum Reprod. 2005;20:138–146. doi: 10.1093/humrep/deh572
  21. Iwaszko M, Bogunia-Kubik K. Clinical significance of the HLA-E and CD94/NKG2 interaction. Arch Immunol Ther Exp. 2011;59(5):353–367. doi: 10.1007/s00005-011-0137-y
  22. Jiang L, Fei H, Jin X, et al. Extracellular vesicle-mediated secretion of HLA-E by trophoblasts maintains pregnancy by regulating the metabolism of decidual NK cells. Int J Biol Sci. 2021;17(15):4377–4395. doi: 10.7150/ijbs.63390
  23. Apps R, Meng Z, Del Prete GQ, et al. Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells. J Immunol. 2015;194(8):3594–600. doi: 10.4049/jimmunol.1403234
  24. Neisig A, Melief CJ, Neefjes J. Reduced cell surface expression of HLA-C molecules correlates with restricted peptide binding and stable TAP interaction. J Immunol. 1998;160(1):171–179.
  25. Piekarska K, Radwan P, Tarnowska A, et al. ERAP, KIR, and HLA-C Profile in Recurrent Implantation Failure. Front Immunol. 2021;12. doi: 10.3389/fimmu.2021.755624
  26. Sherwood OD. Relaxin’s physiological roles and other diverse actions. Endocr Rev. 2004;25(2):205–234. doi: 10.1210/er.2003-0013
  27. Bagnell CA, Zhang Q, Downey B, et al. Sources and biological actions of relaxin in pigs. J Reprod Fertil. 1993;48:127–138.
  28. Ohleth KM, Zhang Q, Bagnell CA. Relaxin protein and gene expression in ovarian follicles of immature pigs. J Mol Endocrinol. 1998;21(2):179–187. doi: 10.1677/jme.0.0210179
  29. Hwang JJ, Lin SW, Teng CH, et al. Relaxin modulates the ovulatory process and increases secretion of different gelatinases from granulosa and theca-interstitial cells in rats. Biol Reprod. 1996;55(6):1276–1283. doi: 10.1095/biolreprod55.6.1276
  30. Bespalova ON, Zagaynova VA, Kosyakova OV, et al. Blood serum and follicular fluid relaxin: a pilot study of the hormone effects on ovarian function and fertilization efficiency. Journal of Obstetrics and Women’s Diseases. 2020;69(5):59–68. (In Russ.) doi: 10.17816/JOWD69559-68
  31. Feugang JM, Rodriguez-Munoz JC, Willard ST, et al. Examination of relaxin and its receptors expression in pig gametes and embryos. Reprod Biol Endocrinol. 2011;9:10. doi: 10.1186/1477-7827-9-10
  32. Adamczak R, Ukleja-Sokołowska N, Lis K, et al. Progesterone-induced blocking factor 1 and cytokine profile of follicular fluid of infertile women qualified to in vitro fertilization: The influence on fetus development and pregnancy outcome. Int J Immunopathol Pharmacol. 2022;36. doi: 10.1177/03946320221111134
  33. Szekeres-Bartho J, Šućurović S, Mulac-Jeričević B. The role of extracellular vesicles and PIBF in embryo-maternal immune-interactions. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.0289
  34. Monteleone P, Parrini D, Faviana P, et al. Female infertility related to thyroid autoimmunity: the ovarian follicle hypothesis. Am J Reprod Immunol. 2011;66(2):108–114. doi: 10.1111/j.1600-0897.2010.00961.x
  35. Chen CW, Huang YL, Tzeng CR, et al. Idiopathic low ovarian reserve is associated with more frequent positive thyroid peroxidase antibodies. Thyroid. 2017;27(9):1194–1200. doi: 10.1089/thy.2017.0139
  36. Safaryan GK, Gzgzyan AM, Dzhemlikhanova LK, et al. The efficiency of IVF/ICSI protocols in female subclinical hypothyroidism and thyroid autoimmunity. Journal of Obstetrics and Women’s Diseases. 2019;68(4):83–94. (In Russ.) doi: 10.17816/JOWD68483-94

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Main characteristics of the expression of follicular fluid components (mean value, standard deviation, maximum and minimum values in the sample). sHLA-G — soluble human leukocyte antigen-G; HLA-E и -С — human leukocyte antigen-E and -C; PIBF — progesterone-inducing blocking factor

Download (289KB)
3. Fig. 2. Pearson’s correlation between biomarker levels in the follicular fluid and the studied parameters: high correlation strength (0.7–0.9), medium correlation strength (0.5–0.7), weak correlation strength (0.3–0.5), very weak correlation strength (0.0–0.3). * p < 0.05; ** p < 0.001. PIBF — progesterone-inducing blocking factor; HLA-C и -E — human leukocyte antigen-C and -E

Download (504KB)

Copyright (c) 2023 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies