An improved method for experimental modeling of premature ovarian insufficiency in Wistar rats

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Despite an enormous progress in the field of reproductive endocrinology, the mechanisms of premature ovarian insufficiency have not been fully understood so far. Knowledge of the supposed causes and mechanisms underlying the development of premature ovarian insufficiency has expanded significantly in recent years, mainly due to advances in genetics and the creation of models for experimental research. The experimental modeling of premature ovarian insufficiency, which is as close as possible to the origin and development of the corresponding disease in humans, is effectively used to elaborate promising therapeutic approaches, in particular, to test new drugs or biologically active agents in order to study their preventive or curative effects. This article discusses the main methods of the experimental modeling of POI in laboratory animals. We have herein summarized the literature data related to the development of the clinical and morphological picture of the disease, with the advantages and disadvantages of each of the models analyzed.

AIM: The aim of this study was to modify the premature ovarian insufficiency modeling methodology to substantiate the effectiveness and to test new directions in drug therapy with subsequent implementation in clinical practice.

MATERIALS AND METHODS: The new method is based on the creation of an experimental premature ovarian insufficiency model in female Wistar rats. To obtain this model, experimental rats were randomized into two groups: 1) animals receiving cyclophosphamide at a dose of 150 mg/kg b.w. subcutaneously once (n = 10); 2) animals receiving 2 ml of saline intraperitoneally once (n = 9). On day10, the animals were removed from the experiment. After autopsy, a visual assessment of morphological changes in the ovaries was carried out, and a right-sided ovariectomy was performed.

RESULTS: When using the proposed model, the reproducibility rate of POI has reached 100%.

CONCLUSIONS: Our modification of the method ensures the creation of a highly reproducible premature ovarian insufficiency model in Wistar rats. Another significant advantage of this modeling method is its ease of implementation and economic efficiency.

Full Text

Restricted Access

About the authors

Karina A. Zakurayeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: zakuraevak@icloud.com
ORCID iD: 0000-0002-8128-306X
SPIN-code: 5215-7869
Russian Federation, Saint Petersburg

Maria I. Yarmolinskaya

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-code: 3686-3605

MD, Dr. Sci. (Med.), Professor of the Russian Academy of Sciences

Russian Federation, Saint Petersburg

Nikita A. Adamenkov

Oryol Regional Clinical Hospital; Turgenev Oryol State University

Email: nikita-ad@mail.ru
ORCID iD: 0000-0002-0238-2941
SPIN-code: 3348-8250
Russian Federation, Oryol; Oryol

Elena V. Potapova

Turgenev Oryol State University

Email: potapova_ev_ogu@mail.ru
ORCID iD: 0000-0002-9227-6308
SPIN-code: 9315-8770

Cand. Sci. (Tech.), Assistant Professor

Russian Federation, Oryol

References

  1. Kapoor E. Premature ovarian insufficiency. Curr Opin Endocr Metab Res. 2023;28. doi: 10.1016/j.coemr.2023.100435
  2. Fernando WD, Vincent A, Magraith K. Premature ovarian insufficiency and infertility. Aust J Gen Pract. 2023;52(1-2):32–38. doi: 10.31128/AJGP-08-22-6531
  3. Wesevich V, Kellen AN, Pal L. Recent advances in understanding primary ovarian insufficiency. F1000Res. 2020;9. doi: 10.12688/F1000RESEARCH.26423.1
  4. Chen M, Jiang H, Zhang C. Selected genetic factors associated with primary ovarian insufficiency. Int J Mol Sci. 2023;24(5):4423. doi: 10.3390/IJMS24054423
  5. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstetrics and Gynecology. 1986;67(4):604–606. doi: 10.1097/00006254-198742030-00020
  6. Luborsky JL, Meyer P, Sowers MF, et al. Premature menopause in a multi-ethnic population study of the menopause transition. Hum Reprod. 2003;18(1):199–206. doi: 10.1093/HUMREP/DEG005
  7. Lagergren K, Hammar M, Nedstrand E, et al. The prevalence of primary ovarian insufficiency in Sweden; a national register study. BMC Womens Health. 2018;18(1):175. doi: 10.1186/s12905-018-0665-2
  8. Golezar S, Ramezani Tehrani F, Khazaei S, et al. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis. Climacteric. 2019;22(4):403–411. doi: 10.1080/13697137.2019.1574738
  9. Li K, Chen G, Hou H, et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod Biomed Online. 2021;42(1):260–267. doi: 10.1016/J.RBMO.2020.09.020
  10. Ding T, Wang T, Zhang J, et al. Analysis of ovarian injury associated with COVID-19 disease in reproductive-aged women in Wuhan, China: an observational study. Front Med. 2021;8. doi: 10.3389/FMED.2021.635255
  11. Henarejos-Castillo I, Sebastian-Leon P, Devesa-Peiro A, et al. SARS-CoV-2 infection risk assessment in the endometrium: viral infection-related gene expression across the menstrual cycle. Fertil Steril. 2020;114(2):223–232. doi: 10.1016/j.fertnstert.2020.06.026
  12. Herr D, Bekes I, Wulff C. Local renin-angiotensin system in the reproductive system. Front Endocrinol. 2013;4:150. doi: 10.3389/fendo.2013.00150
  13. Webber L, Davies M, Anderson R, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937. doi: 10.1093/HUMREP/DEW027
  14. Tugrul Ersak D, Yilmaz N, Cavkaytar S, et al. Investigation of the role of serum telomerase levels in patients with occult primary ovarian insufficiency: a prospective cross-sectional study. J Obstet Gynaecol. 2022;42(3):485–489. doi: 10.1080/01443615.2021.1916807
  15. Mohamed SA, Shalaby S, Brakta S, et al. Umbilical cord blood mesenchymal stem cells as an infertility treatment for chemotherapy induced premature ovarian insufficiency. Biomedicines. 2019;7(1):7. doi: 10.3390/biomedicines7010007
  16. Kalich-Philosoph L, Roness H, Carmely A, et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5(185). doi: 10.1126/scitranslmed.3005402
  17. Li H, Song D, Zhong Y, et al. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model. Biomed Res Int. 2016;2016. doi: 10.1155/2016/2517514
  18. Manshadi MD, Navid S, Hoshino Y, et al. The effects of human menstrual blood stem cells-derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure. Microsc Res Tech. 2019;82(6):635–642. doi: 10.1002/JEMT.23120
  19. Liu T, Li Q, Wang S, et al. Transplantation of ovarian granulosa-like cells derived from human induced pluripotent stem cells for the treatment of murine premature ovarian failure. Mol Med Rep. 2016;13(6):5053–5058. doi: 10.3892/MMR.2016.5191
  20. Tan R, He Y, Zhang S, et al. Effect of transcutaneous electrical acupoint stimulation on protecting against radiotherapy-induced ovarian damage in mice. J Ovarian Res. 2019;12(1):65. doi: 10.1186/S13048-019-0541-1
  21. Rajkovic A, Pangas SA, Ballow D, et al. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004;305(5687):1157–1159. doi: 10.1126/SCIENCE.1099755
  22. Zhou Y, Qin Y, Qin Y, et al. Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans. PLoS Genet. 2018;14(8). doi: 10.1371/JOURNAL.PGEN.1007463
  23. Li N, Liu L. Mechanism of resveratrol in improving ovarian function in a rat model of premature ovarian insufficiency. J Obstet Gynaecol Res. 2018;44(8):1431–1438. doi: 10.1111/JOG.13680

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Rat ovary after induction of premature ovarian insufficiency: complete absence of follicles. Hematoxylin and eosin staining, zoom ×100

Download (90KB)
3. Fig. 2. Rat ovary after induction of premature ovarian insufficiency: unchanged ovarian tissue from a control rat. Hematoxylin and eosin staining, zoom ×100

Download (81KB)

Copyright (c) 2023 Eсо-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies