Species composition of vaginal lactobacilli in the first, second and third trimester as a marker of pregnancy outcomes

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Lactobacilli are the main and most important component of the vaginal microbiota of reproductive-age women. During pregnancy, the composition of the vaginal microbiota changes and acquires additional significance, acting as a barrier against infection for both the mother and the fetus. Furthermore, the vaginal microbiota contributes to the normal course of pregnancy, postpartum recovery, and primary colonization of the newborn. Changes in the composition and number of vaginal lactobacilli during pregnancy can lead to serious disorders. Despite much research on the role of the vaginal microbiota, the details of how changes in lactobacilli composition and diversity may affect pregnancy outcomes are poorly understood.

AIM: The aim of this study was to evaluate the vaginal lactoflora composition and stability in each trimester to predict pregnancy outcomes.

MATERIALS AND METHODS: This open prospective study involved 100 women who had been registered at the dispensary in early pregnancy (up to 12 weeks). To determine the type of microbiocenosis and the species composition of lactobacilli, the vaginal discharge was examined microscopically and by real-time polymerase chain reaction.

RESULTS: Normocenosis was identified in 86 (86%) pregnant women, the intermediate type of vaginal microbiocenosis in 4 (4%) pregnant women, and bacterial vaginosis in 10 (10%) pregnant women. The rate of negative pregnancy outcomes was 19%, of which 7% and 12% of women had premature births or miscarriages, respectively. The concentration of vaginal lactobacilli in each pregnant woman was relatively stable over the three trimesters. Among the dominant microflora, the frequency of Lactobacillus crispatus increased by the third trimester. Lactobacillus iners was associated with an increased incidence of premature birth and may be considered as a risk factor.

CONCLUSIONS: Real-time PCR test for specific detection and quantification of vaginal lactobacilli in pregnant women has prognostic value and may be recommended as a possible screening test for women with high risk of adverse pregnancy outcomes.

Full Text

Restricted Access

About the authors

Natalia R. Beliaeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: natascha778@yandex.ru
ORCID iD: 0000-0002-4277-1474
SPIN-code: 4126-3035
Russian Federation, Saint Petersburg

Olga V. Budilovskaya

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: o.budilovskaya@gmail.com
ORCID iD: 0000-0001-7673-6274
SPIN-code: 7603-6982

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Tatiana A. Khusnutdinova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: husnutdinovat@yandex.ru
ORCID iD: 0000-0002-2742-2655
SPIN-code: 9533-9754

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Anna A. Krysanova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: krusanova.anna@mail.ru
ORCID iD: 0000-0003-4798-1881
SPIN-code: 2438-0230

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Kira V. Shalepo

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: 2474151@mail.ru
ORCID iD: 0000-0002-3002-3874
SPIN-code: 2527-7198

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Alevtina M. Savicheva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: savitcheva@mail.ru
ORCID iD: 0000-0003-3870-5930
SPIN-code: 8007-2630

MD, Dr. Sci. (Med.), Professor, Honored Worker of Science of the Russian Federation

Russian Federation, Saint Petersburg

Natalia I. Tapilskaya

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: tapnatalia@yandex.ru
ORCID iD: 0000-0001-5309-0087
SPIN-code: 3605-0413

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

References

  1. Poljakova TV. Analiz dinamiki samoproizvol’nyh vykidyshej v Rossii. Aktual’nye issledovanija. 2021;50(77):42–44. (In Russ.) [cited 2023 Sept 12]. Available from: https://apni.ru/article/3434-analiz-dinamiki-samoproizvolnikh-vikidishej
  2. Grewal K, Lee YS, Smith A, et al. Chromosomally normal miscarriage is associated with vaginal dysbiosis and local inflammation. BMC Med. 2022;20(1):38. doi: 10.1186/s12916-021-02227-7
  3. Gomez-Lopez N, Galaz J, Miller D, et al. The immunobiology of preterm labor and birth: intra-amniotic inflammation or breakdown of maternal-fetal homeostasis. Reproduction. 2022;164(2):R11–R45. doi: 10.1530/REP-22-0046
  4. Tchirikov M, Schlabritz-Loutsevitch N, Maher J, et al. Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome. J Perinat Med. 2018;46(5):465–488. doi: 10.1515/jpm-2017-0027
  5. Romero R, Pacora P, Kusanovic JP, et al. Clinical chorioamnionitis at term X: microbiology, clinical signs, placental pathology, and neonatal bacteremia – implications for clinical care. J Perinat Med. 2021;49(3):275–298. doi: 10.1515/jpm-2020-0297
  6. Romero R, Gomez-Lopez N, Winters AD, et al. Evidence that intra-amniotic infections are often the result of an ascending invasion – a molecular microbiological study. J Perinat Med. 2019;47(9):915–931. doi: 10.1515/jpm-2019-0297
  7. Fan SR, Liu P, Yan SM, et al. Diagnosis and management of intraamniotic infection. maternal-fetal medicine. 2020;2(4):223–230. doi: 10.1097/FM9.0000000000000052
  8. Mihalev SA, Babichenko II, Shahpazjan NK, et al. Role of urogenital infection in the development of preterm delivery. Russian Journal of Human Reprotuction (Problemy reprodukcii). 2019;25(2):93–99. (In Russ.) doi: 10.17116/repro20192502193
  9. Kira EF. Bakterial’nyy vaginoz. Moscow: MIA; 2012. (In Russ.)
  10. Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 2020;19(1):203. doi: 10.1186/s12934-020-01464-4
  11. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108(1):4680–4687. doi: 10.1073/pnas.1002611107
  12. France MT, Ma B, Gajer P, et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome. 2020;8(1):166. doi: 10.1186/s40168-020-00934-6
  13. Aagaard K, Riehle K, Ma J, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One. 2012;7(6). doi: 10.1371/journal.pone.0036466
  14. Serrano MG, Parikh HI, Brooks JP, et al. Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat Med. 2019;25(6):1001–1011. doi: 10.1038/s41591-019-0465-8
  15. Kiss H, Kögler B, Petricevic L, et al. Vaginal Lactobacillus microbiota of healthy women in the late first trimester of pregnancy. BJOG. 2007;114(11):1402–1407. doi: 10.1111/j.1471-0528.2007.01412.x
  16. Veščičík P, Kacerovská Musilová I, et al. Lactobacillus crispatus dominant vaginal microbita in pregnancy. Ceska Gynekol. 2020;85(1):67–70.
  17. Budilovskaya OV, Shipitsyna EV, Gerasimova EN, et al. Species diversity of vaginal lactobacilli in norm and in dysbiotic states. Journal of Obstetrics And Women’s Diseases. 2017;66(2):24–32. (In Russ.) doi: 10.17816/JOWD66224-32
  18. Melkumyan AR, Priputnevich TV, Ankirskaya AS, et al. Lactobacilli species diversity in different states of vaginal microbiota in pregnant women. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija. 2013;15(1):72–79. (In Russ.)
  19. Voroshilina ES, Zornikov DL, Plotko EE. Normal vaginal microbiota: patient’s sujective evaluation, physical examination and laboratory tests. Bulletin of Russian State Medical University. 2017;(2):42–46. (In Russ.) doi: 10.24075/brsmu.2017-02-06
  20. Sinyakova AA, Shipitsyna EV, Budilovskaya OV, et al. Anamnestic and microbiological predictors of miscarriage. Journal of Obstetrics And Women’s Diseases. 2019;68(2):59–70. doi: 10.17816/JOWD68259-70
  21. Edwards VL, Smith SB, McComb EJ, et al. The cervicovaginal microbiota-host interaction modulates Chlamydia trachomatis infection. mBio. 2019;10(4). doi: 10.1128/mBio.01548-19
  22. Wang S, Wang Q, Yang E, et al. Antimicrobial compounds produced by vaginal Lactobacillus crispatus are able to strongly inhibit candida albicans growth, hyphal formation and regulate virulence-related gene expressions. Front Microbiol. 2017;8:564. doi: 10.3389/fmicb.2017.00564
  23. Borgdorff H, Tsivtsivadze E, Verhelst R, et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J. 2014;8(9):1781–1793. doi: 10.1038/ismej.2014.26
  24. Amerson-Brown MH, Miller AL, Maxwell CA, et al. Cultivated human vaginal microbiome communities impact zika and herpes simplex virus replication in ex vivo vaginal mucosal cultures. Front Microbiol. 2019;9:3340. doi: 10.3389/fmicb.2018.03340
  25. Pestrikova TYu, Kotelnikova AV. Species composition of vaginal lactoflora in women with diseases of the vagina and cervix. Women’s health and reproduction. 2021;(2(49)). (In Russ.) [cited 12 Sept 2023]. Available from: http://whfordoctors.su/statyi/vidovoj-sostav-vaginalnoj-laktoflory-u-zhenshhin-s-patologiej-vlagalishha-i-shejki-matki/
  26. Tamarelle J, Thiébaut ACM, de Barbeyrac B, et al. The vaginal microbiota and its association with human papillomavirus, Chlamydia trachomatis. Neisseria gonorrhoeae and Mycoplasma genitalium infections: a systematic review and meta-analysis. Clin Microbiol Infect. 2019;25(1):35–47. doi: 10.1016/j.cmi.2018.04.019
  27. van Houdt R, Ma B, Bruisten SM, et al. Lactobacillus iners-dominated vaginal microbiota is associated with increased susceptibility to Chlamydia trachomatis infection in Dutch women: a case-control study. Sex Transm Infect. 2018;94(2):117–123. doi: 10.1136/sextrans-2017-053133
  28. Kwak W, Han YH, Seol D, et al. Complete genome of Lactobacillus iners KY using flongle provides insight into the genetic background of optimal adaption to vaginal econiche. Front Microbiol. 2020;11:1048. doi: 10.3389/fmicb.2020.01048
  29. Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29(2):297–301. doi: 10.1128/jcm.29.2.297-301.1991
  30. Witkin SS, Moron AF, Linhares IM, et al. Influence of Lactobacillus crispatus, Lactobacillus iners and Gardnerella vaginalis on bacterial vaginal composition in pregnant women. Arch Gynecol Obstet. 2021;304(2):395–400. doi: 10.1007/s00404-021-05978-z
  31. Gupta P, Singh MP, Goyal K. Diversity of vaginal microbiome in pregnancy: deciphering the obscurity. Front Public Health. 2020;8:326. doi: 10.3389/fpubh.2020.00326
  32. Fettweis JM, Serrano MG, Brooks JP, et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25(6):1012–1021. doi: 10.1038/s41591-019-0450-2
  33. Parolin C, Frisco G, Foschi C, et al. Lactobacillus crispatus BC5 interferes with Chlamydia trachomatis infectivity through integrin modulation in cervical cells. Front Microbiol. 2018;9:2630. doi: 10.3389/fmicb.2018.02630
  34. MacIntyre DA, Chandiramani M, Lee YS, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015;5:8988. doi: 10.1038/srep08988
  35. Khodzhaeva ZS, Guseinova GE, Muravyeva VV, et al. Characteristics of the vaginal microbiota in pregnant women with preterm premature rupture of the membranes. Obstetrics and Gynecology. 2019;(12):64–72. (In Russ.) doi: 10.18565/aig.2019.12.66-74
  36. Bayar E, Bennett PR, Chan D, et al. The pregnancy microbiome and preterm birth. Semin Immunopathol. 2020;42(4):487–499. doi: 10.1007/s00281-020-00817-w
  37. Zierden HC, DeLong K, Zulfiqar F, et al. Cervicovaginal mucus barrier properties during pregnancy are impacted by the vaginal microbiome. Front Cell Infect Microbiol. 2023;13. doi: 10.3389/fcimb.2023.1015625
  38. France MT, Mendes-Soares H, Forney LJ. Genomic comparisons of Lactobacillus crispatus and Lactobacillus iners reveal potential ecological drivers of community composition in the vagina. Appl Environ Microbiol. 2016;82(24):7063–7073. doi: 10.1128/AEM.02385-16
  39. Goodfellow L, Verwijs MC, Care A, et al. Vaginal bacterial load in the second trimester is associated with early preterm birth recurrence: a nested case-control study. BJOG. 2021;128(13):2061–2072. doi: 10.1111/1471-0528.16816
  40. Chan D, Bennett PR, Lee YS, et al. Microbial-driven preterm labour involves crosstalk between the innate and adaptive immune response. Nat Commun. 2022;13(1):975. doi: 10.1038/s41467-022-28620-1
  41. Witkin SS, Linhares IM. Why do lactobacilli dominate the human vaginal microbiota? BJOG. 2017;124(4):606–611. doi: 10.1111/1471-0528.14390
  42. Smith SB, Ravel J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 2017;595:451–463. doi: 10.1113/JP271694
  43. Witkin SS, Mendes-Soares H, Linhares IM, et al. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. mBio. 2013;4(4). doi: 10.1128/mBio.00460-13
  44. Baud A, Hillion KH, Plainvert C, et al. Microbial diversity in the vaginal microbiota and its link to pregnancy outcomes. Sci Rep. 2023;13(1):9061. doi: 10.1038/s41598-023-36126-z
  45. Al-Memar M, Bobdiwala S, Fourie H, et al. The association between vaginal bacterial composition and miscarriage: a nested case-control study. BJOG. 2020;127(2):264–274. doi: 10.1111/1471-0528.15972

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of the dominant Lactobacilli species depending on the type of vaginal microbiocenosis in women in the I trimester of pregnancy

Download (85KB)
3. Fig. 2. Assessment of the composition of vaginal lactobacilli during pregnancy in the general group of patients, decimal logarithm of concentration

Download (336KB)
4. Fig. 3. Concentration dynamics of Lactobacillus vaginalis in the general group of pregnant women

Download (73KB)
5. Fig. 4. Differences in the concentration dynamics of Lactobacillus iners in the study groups of term and premature births

Download (98KB)
6. Fig. 5. Dominance of Lactobacilli species during pregnancy in the study groups

Download (298KB)
7. Fig. 6. Dominance dynamics of Lactobacillus crispatus during pregnancy in the study groups

Download (66KB)
8. Fig. 7. Differences in the dominance frequency of Lactobacillus iners in the first and second trimesters of pregnancy in women with preterm birth (second group)

Download (99KB)
9. Fig. 8. Comparison of the dominance frequency of different types of lactobacilli depending on the outcome of pregnancy in the form of miscarriage

Download (204KB)

Copyright (c) 2023 Eсо-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies