Circulating tumor RNA and exosomes as disease prognosis and therapy effectivity novel markers in case of malignant gliomas in adults

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Malignant gliomas of CNS are the most wide-spread variant of primary brain tumors characteristic of invasive growth, fast evolution, high resistance to therapy and consequently quick recurrence that causes death of the patients. Taking into consideration peculiar features of these neoplasms an acute need has sprung in neurooncologic community for a search of novel low-invasive methods for the assessment of treatment effectivity and determining the progression rate of the disease. During the last decade a great number of studies exploring various circulating tumor ribonucleic acids in case of astrocytoma have been accomplished. The tumor nucleic acids as well as vesicles expressed by glioma may be discovered in blood and spine fluid. Thus these biomarkers are the most perspective targets for realizing these goals. The review presents tumor ribonucleic acids and exosomes, regulatory signaling pathways within tumor glioma cell causing resistance towards alkalizing chemical preparations and directly participating in recurrence. The most prospective nucleic acids as prognosis biomarkers and response to specific antitumor therapy predictors were determined and the most informative methods of their assessment have been depicted. Possibilities of alkalizing agents effectivity rise by means of nucleic acids expression correction have been discussed.

Full Text

Restricted Access

About the authors

Elizaveta V. Ermolaeva

National Research Center “Kurchatov Institute”

Email: s.sklyar2017@yandex.ru
ORCID iD: 0000-0001-9920-4262
SPIN-code: 5299-3480

laboratory researcher

Russian Federation, Moscow

Sofia S. Sklyar

Polenov Russian Neurosurgical Institute – the branch of Almazov National Medical Research Centre

Author for correspondence.
Email: s.sklyar2017@yandex.ru
ORCID iD: 0000-0002-3284-9688
SPIN-code: 4679-3548

MD, PhD, Senior Researcher, research laboratory of neurooncology

Russian Federation, Saint Petersburg

Nikolai V. Tsygan

Kirov Military Medical Academy

Email: 77th77@gmail.com
ORCID iD: 0000-0002-5881-2242
SPIN-code: 1006-2845

MD, PhD, Dr. Sci. (Medicine), Associate Professor, Department Neurology

Russian Federation, Saint Petersburg

Bobir I. Safarov

Polenov Russian Neurosurgical Institute – the branch of Almazov National Medical Research Centre

Email: safarovbob@mail.ru
ORCID iD: 0000-0002-2369-7424
SPIN-code: 1230-6455

MD, PhD, Head of 4th Department Neurooncology

Russian Federation, Saint Petersburg

Victoria S. Kushnirova

Polenov Russian Neurosurgical Institute – the branch of Almazov National Medical Research Centre

Email: victoria.kushnitova@mail.ru
ORCID iD: 0000-0003-0480-0884
SPIN-code: 9105-5852

neurosurgeon

Russian Federation, Saint Petersburg

Olesya I. Timaeva

National Research Center “Kurchatov Institute”

Email: timaeva_oi@nrcki.ru
ORCID iD: 0000-0002-9929-3899
SPIN-code: 2784-2499

PhD, Academic secretary

Russian Federation, Moscow

Andrei G. Vasiliev

Saint Petersburg State Pediatric Medical University

Email: avas7@mail.ru

MD, PhD, Dr. Sci. (Medicine), Professor, Head of Pathophysiology Department

Russian Federation, Saint Petersburg

Alexandr P. Trashkov

National Research Center “Kurchatov Institute”

Email: alexandr.trashkov@gmail.com
ORCID iD: 0000-0002-3441-0388
SPIN-code: 4231-1258

MD, PhD, Head of the Neurocognitive

Russian Federation, Moscow

Anna V. Vasilieva

Saint Petersburg State Pediatric Medical University

Email: a-bondarenko@yandex.ru
ORCID iD: 0009-0008-2356-1552
SPIN-code: 5333-0144

Assistant Professor, Department of Pathological Physiology with the Course of Immunopathology

Russian Federation, Saint Petersburg

References

  1. Alliluev IA, Pushkin AA, Kuznetsova NS, et al. Estimation of the diagnostic significance of circulating micrornas in blood plasma of patients with high grade gliomas. Modern problems of science and education. 2020;(6):135. doi: 10.17513/spno.30309
  2. Vashchenko VI, Chuklovin AB, Shabanov PD. Circular RNAs in eukaryotic cells: origin, characteristics, mechanisms of molecular functioning in human malignant diseases. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(4):335–384. doi: 10.17816/RCF204335-384
  3. Matsko MV, Sklyar SS, Ulitin AYu, et al. Changes in the MGMT gene expression in patients with primary glioblastoma after relapse. Influence of clinical characteristics and MGMT expression on survival of patients. Siberian journal of oncology. 2021;20(3):5–17. doi: 10.21294/1814-4861-2021-20-3-5-17
  4. Ryabova AI, Novikov VA, Choynzonov EL, et al. The role of liquid biopsy in the diagnosis of glioblastoma progression. Siberian journal of oncology. 2022;21(3):104–116. doi: 10.21294/1814-4861-2022-21-3-104-116
  5. Ulitin AY, Matsko MV, Kobyakov GL, et al. Practical recommendations on drug treatment of primary tumors of the central nervous system. Malignant tumours. 2022;12(3s2–1):113–140. doi: 10.18027/2224-5057-2022-12-3s2-113-140
  6. Akers JC, Hua W, Li H, et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget. 2017;8(40): 68769–68779. doi: 10.18632/oncotarget.18332
  7. Birkó Z, Nagy B, Klekner Á, Virga J. Novel molecular markers in glioblastoma — benefits of liquid biopsy. Int J Mol Sci. 2020;21(20):7522. doi: 10.3390/ijms21207522
  8. Brat DJ, Ellison DW, Figarella-Branger D, et al. WHO Classification of Tumours Editorial Board. Central nervous system tumours. Lyon (France): International Agency for Research on Cancer. WHO Classification of Tumours Series, 5th ed. 2021. Vol. 2.
  9. Cai Q, Zhu A, Gong L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bull Cancer (Paris). 2018;105(7–8):643–651. doi: 10.1016/j.bulcan.2018.05.003
  10. Cai X, Janku F, Zhan Q, Fan J-B. Accessing genetic information with liquid biopsies. Trends Genet. 2015;31(10):564–575. doi: 10.1016/j.tig.2015.06.001
  11. Chen F, Peng X, Teng Z, et al. Identification of prognostic LncRNAs subtypes predicts prognosis and immune microenvironment for Glioma. Evid Based Complementary Altern Med. 2022;2022:3709823. doi: 10.1155/2022/3709823
  12. Chen W, Xu X-K, Li J-L, et al. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget. 2017;8(14):22783–22799. doi: 10.18632/oncotarget.15199
  13. Ebrahimkhani S, Vafaee F, Hallal S, et al. Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis Oncol. 2018;2:28. doi: 10.1038/s41698-018-0071-0
  14. Fernandez-Mercado M, Manterola L, Larrea E, et al. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids. J Cell Mol Med. 2015;19(10):2307–2323. doi: 10.1111/jcmm.12625
  15. Fontanilles M, Duran-Peña A, Idbaih A. Liquid biopsy in primary brain tumors: looking for stardust! Curr Neurol Neurosci Rep. 2018;18(3):13. doi: 10.1007/s11910-018-0820-z
  16. Gaurav I, Thakur A, Iyaswamy A, et al. Factors affecting extracellular vesicles based drug delivery systems. Molecules. 2021;26(6):1544. doi: 10.3390/molecules26061544
  17. Giusti I, Delle Monache S, Di Francesco M, et al. From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis. Tumor Biol. 2016;37(9):12743–12753. doi: 10.1007/s13277-016-5165-0
  18. Goo N-I, Kim D-E. Rolling circle amplification as isothermal gene amplification in molecular diagnostics. Biochip J. 2016;10(4):262–271. doi: 10.1007/s13206-016-0402-6
  19. Guo X, Qiu W, Wang J, et al. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways. Int J Cancer. 2019;144(12):3111–3126. doi: 10.1002/ijc.32052
  20. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from Temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. doi: 10.1056/NEJMoa043331
  21. Jiao J, Gao T, Shi H, et al. A method to directly assay circRNA in real samples. Chem Commun. 2018;54(95):13451–13454. doi: 10.1039/C8CC08319C
  22. Jiao J, Li C, Ning L, et al. Electrochemical detection of circRNAs based on the combination of back-splice junction and duplex-specific nuclease. Sens Actuators B Chem. 2020;302:127166. doi: 10.1016/j.snb.2019.127166
  23. Jiao J, Xiang Y, Duan C, et al. Lighting up circRNA using a linear DNA nanostructure. Anal Chem. 2020;92(18):12394–12399. doi: 10.1021/acs.analchem.0c02146
  24. Kim Y-K, Yeo J, Kim B, et al. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell. 2012;46(6):893–895. doi: 10.1016/j.molcel.2012.05.036
  25. Lei B, Huang Y, Zhou Z, et al. Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression. J Cell Biochem. 2019;120(4):6698–6708. doi: 10.1002/jcb.27966
  26. Li J, Li Y, Li P, et al. Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater. 2022;144:1–14. doi: 10.1016/j.actbio.2022.03.036
  27. Li Y, Liu Y, Ren J, et al. miR-1268a regulates ABCC1 expression to mediate temozolomide resistance in glioblastoma. J Neurooncol. 2018;138(3):499–508. doi: 10.1007/s11060-018-2835-3
  28. Lu Y, Tian M, Liu J, Wang K. LINC00511 facilitates Temozolomide resistance of glioblastoma cells via sponging miR-126-5p and activating Wnt/β-catenin signaling. J Biochem Mol Toxicol. 2021;35(9): e22848. doi: 10.1002/jbt.22848
  29. Mazor G, Levin L, Picard D, et al. The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis. 2019;10(3):246. doi: 10.1038/s41419-019-1477-5
  30. Mi Z, Zhongqiang C, Caiyun J, et al. Circular RNA detection methods: A minireview. Talanta. 2022;238-2:123066. doi: 10.1016/j.talanta.2021.123066
  31. Montani F, Bianchi F. Circulating cancer biomarkers: the macro-revolution of the micro-RNA. EBioMedicine. 2016;5:4–6. doi: 10.1016/j.ebiom.2016.02.038
  32. Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol Seoul Korea. 2015;53(1):1–5. doi: 10.1007/s12275-015-4656-9
  33. Ostom QT, Price M, Neff C, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24(S5):v1–v95. doi: 10.1093/neuonc/noac202
  34. Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 2015;43(4):2454–2465. doi: 10.1093/nar/gkv045
  35. Saenz-Antoñanzas A, Auzmendi-Iriarte J, Carrasco-Garcia E, et al. Liquid biopsy in glioblastoma: Opportunities, applications and challenges. Cancers. 2019;11(7):950. doi: 10.3390/cancers11070950
  36. Shankar GM, Balaj L, Stott SL, et al. Liquid biopsy for brain tumors. Expert Rev Mol Diagn. 2017;17(10):943–947. doi: 10.1080/14737159.2017.1374854
  37. Shao H, Chung J, Lee K, et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6:6999. doi: 10.1038/ncomms7999
  38. Shen J, Hodges TR, Song R, et al. Serum HOTAIR and GAS5 levels as predictors of survival in patients with glioblastoma. Mol Carcinog. 2018;57(1):137–141. doi: 10.1002/mc.22739
  39. Smith HL, Wadhwani N, Horbinski C. Major features of the 2021 WHO classification of CNS tumors. Neurotherapeutics. 2022;19(6):1691–1704. doi: 10.1007/s13311-022-01249-0
  40. Sun X, Ma X, Wang J, et al. Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal. Oncotarget. 2017;8(22):36137–36148. doi: 10.18632/oncotarget.16661
  41. Wang X, Li X, Zhou Y, et al. Long non-coding RNA OIP5-AS1 inhibition upregulates microRNA-129-5p to repress resistance to temozolomide in glioblastoma cells via downregulating IGF2BP2. Cell Biol Toxicol. 2022;38(6):963–977. doi: 10.1007/s10565-021-09614-z
  42. Xu N, Liu B, Lian C, et al. Long noncoding RNA AC003092.1 promotes temozolomide chemosensitivity through miR-195/TFPI-2 signaling modulation in glioblastoma. Cell Death Dis. 2018;9(12):1139. doi: 10.1038/s41419-018-1183-8
  43. Yin J, Zeng A, Zhang Z, et al. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMedicine. 2019;42:238–251. doi: 10.1016/j.ebiom.2019.03.016
  44. Yue X, Lan F, Xia T. Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7. Mol Ther J Am Soc Gene Ther. 2019;27(11):1939–1949. doi: 10.1016/j.ymthe.2019.07.011
  45. Zeng A, Wei Z, Yan W, et al. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett. 2018;436:10–21. doi: 10.1016/j.canlet.2018.08.004
  46. Zeng Z, Chen Y, Geng X, et al. NcRNAs: Multiangle participation in the regulation of glioma chemotherapy resistance (Review). Int J Oncol. 2022;60(6):76. doi: 10.3892/ijo.2022.5366
  47. Zhang Z, Yin J, Lu C, et al. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 2019;38(1):166. doi: 10.1186/s13046-019-1139-6
  48. Zhen Y, Nan Y, Guo S, et al. Knockdown of NEAT1 repressed the malignant progression of glioma through sponging miR-107 and inhibiting CDK14. J Cell Physiol. 2019;234(7):10671–10679. doi: 10.1002/jcp.27727

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies