Birth spine and spinal cord injury (Draft of the clinical recommendations)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Birth spinal cord injury is damage to the spinal cord of a neonates due to mechanical causes during childbirth. The leading role in the development of spinal cord injury in newborns is played by excessive longitudinal or lateral traction of the spine or excessive twisting. The true incidence of birth spinal cord injury is unclear. There is currently no single classification of birth spinal cord injury and the distinction is made based on morphology, localization, nature and type of disorders. Birth spinal cord injury has 3 main groups of manifestations: stillbirth or rapid death of the newborn; respiratory failure; muscle weakness and hypotension, alternating with spasticity. Along with a visual examination of the newborn, it is recommended to conduct a study of the acid-base balance and blood gases in order to clarify the nature and treatment of respiratory failure; X-ray of the cervical and thoracic spine, ultrasound examination of the spinal cord, computed tomography of the spine and / or magnetic resonance imaging of the spine and spinal cord for the purpose of differential diagnosis; ultrasonic examination of the lungs to detect high placement of the diaphragm in case of damage to the C3–C5 segments of the spinal cord, consultations with a neurologist, anesthesiologist-resuscitator and a neurosurgeon. Mechanic respiratory ventilation is recommended for a newborn with birth spinal cord injury and with signs of damage to the C3–C5 segments and respiratory failure; in the presence of extramedullary damage, fracture or dislocation of the vertebrae — emergency neurosurgical treatment. Rehabilitation includes measures in the form of massage of the upper limb, therapeutic exercise, individual lessons, physiotherapy in order to restore the functions of the muscles and joints of the shoulder girdle; in case of respiratory regulation disorders — home ventilator systems; in case of persistent movement disorders after 1 month of age — transcutaneous electrical neurostimulation of the spinal cord. It is recommended to assess the size of the pregnant woman’s pelvis and the intrauterine presentation of the fetus in order to select the type of delivery to prevent birth spinal cord injury, rational drug therapy and anesthetic care for the pregnant woman in order to prevent dysfunctional labor.

Full Text

Restricted Access

About the authors

Alexander B. Palchik

Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: xander57@mail.ru
ORCID iD: 0000-0001-9073-1445
SPIN-code: 1410-4035

MD, Dr. Sci. (Medicine), Professor of the Department of Neonatology with courses in Neurology and Obstetrics of Gynecology at the Faculty of Postgraduate and Additional Professional Education

Russian Federation, 2 Litovskaya st., Saint Petersburg, 194100

Dmitry O. Ivanov

Saint Petersburg State Pediatric Medical University

Email: doivanov@yandex.ru
ORCID iD: 0000-0002-0060-4168
SPIN-code: 4437-9626

MD, PhD, Dr. Sci. (Medicine), Professor, Chief Freelance Neonatologist of the Ministry of Health of Russia, Rector, Head of the Department of Neonatology with courses of Neurology and Obstetrics and Gynecology of Faculty of Postgraduate and Additional Professional Education

Russian Federation, 2 Litovskaya st., Saint Petersburg, 194100

Maria Yu. Fomina

Saint Petersburg State Pediatric Medical University

Email: myfomina@mail.ru
ORCID iD: 0000-0001-6244-9450
SPIN-code: 2463-2127

MD, Dr. Sci. (Medicine), Professor of the Department of Neonatology with courses in Neurology and Obstetrics of Gynecology at the Faculty of Postgraduate and Additional Professional Education

Russian Federation, 2 Litovskaya st., Saint Petersburg, 194100

Andrey E. Ponyatishin

Saint Petersburg State Pediatric Medical University

Email: aponyat@mail.ru
ORCID iD: 0009-0009-9154-6781
SPIN-code: 5000-2299

MD, PhD, Associate Professor of the Department of Neonatology with courses in Neurology and Obstetrics of Gynecology at the Faculty of Postgraduate and Additional Professional Education

Russian Federation, 2 Litovskaya st., Saint Petersburg, 194100

Aleksey V. Minin

Saint Petersburg State Pediatric Medical University

Email: alexey_minin@mail.ru
SPIN-code: 4533-1166

MD, PhD, Associate Professor of the Department of Neonatology with courses in Neurology and Obstetrics of Gynecology at the Faculty of Postgraduate and Additional Professional Education

Russian Federation, 2 Litovskaya st., Saint Petersburg, 194100

References

  1. Vlasiuk VV, Ivanov DO. Clinical recommendations on diagnosis and treatment of birth trauma (draft). RASPM; 2016. 28 p. ( In Russ.)
  2. Volpe JJ. El-Dib M. Perinatal trauma. Injuries of extracranial, cranial, intracranial, spinal cord, and peripheral nervous system structures. In: Volpe JJ, editor. Volpe’s neurology of the newborn. 7th ed. Elsevier; 2025. P. 1251–1282. doi: 10.1016/B978-0-443-10513-5.00040-1
  3. Crothers B. The effect of breech extraction on the central nervous system of the fetus. Med Clin North America. 1922;5:1287–1295.
  4. Crothers B. Injury of the spinal cord in breech extraction as an important cause of fetal death and paraplegia in childhood. Amer J Med Sci. 1923;165:94–99.
  5. Ford FR. Diseases of the nervous system in infancy, childhood, and adolescence. Springfield: Charles C. Thomas; 1960. doi: 10.1097/00007611-196009000-00037
  6. Menticoglou SM, Perlman M, Manning FA. High cervical spinal cord injury in neonates delivered with forceps: Report of 15 cases. Obstet Gynecol. 1995;86(4-1):589–594. doi: 10.1016/0029-7844(95)00213-b
  7. Rossitch E Jr, Oakes WJ. Perinatal spinal cord injury: clinical, radiographic and pathologic features. Pediatr Neurosurg. 1992;18(3):149–152. doi: 10.1159/000120655
  8. Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75(1):15–26. doi: 10.3171/jns.1991.75.1.0015
  9. Walker MD. Acute spinal-cord injury. N Engl J Med. 1991;324(26):1885–1887. doi: 10.1056/NEJM199106273242608
  10. Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury — a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med. 1991;324(26):1829–1838. doi: 10.1056/NEJM199106273242601
  11. Bracken MD, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. N Engl J Med. 1990;322(20):1405–1411. doi: 10.1056/NEJM199005173222001
  12. Bracken MD, Shepard MJ, Collins WF, et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. J Neurosurg. 1992;76(1):23–31. doi: 10.3171/jns.1992.76.1.0023
  13. Holtz A, Gerdin B. MK 801, an N-methyl-d-aspartate channel blocker, does not improve the functional recovery nor spinal cord blood flow after spinal cord compression in rats. Acta Neurol Scand. 1991;84(4):334–338. doi: 10.1111/j.1600-0404.1991.tb04964.x
  14. Demediuk P, Daly MP, Faden AI. Effect of impact trauma on neurotransmitter and nonneurotransmitter amino acids in rat spinal cord. J Neurochem. 1989;52(5):1529–1536. doi: 10.1111/j.1471-4159.1989.tb09204.x
  15. Faden AI, Simon RP. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol. 1988;23(6): 623–626. doi: 10.1002/ana.410230618
  16. Faden AI, Lemke M, Simon RP, Noble LJ. N-methyl-d-aspartate antagonist MK801 improves outcome following traumatic spinal cord injury in rats: Behavioral, anatomic, and neurochemical studies. J Neurotrauma. 1988;5(1):33–45. doi: 10.1089/neu.1988.5.33
  17. Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or Tirilazad Mesylate for 48 hours in the treatment of acute spinal cord injury. JAMA. 1997;277(20):1597–1604. doi: 10.1001/jama.1997.03540440031029
  18. Boulland JL, Lambert FM, Zuchner M, et al. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration. PLoS One. 2013;8(8):e71701. doi: 10.1371/journal.pone.0071701
  19. Witiw CD, Fehlings MG. Acute spinal cord injury. J Spinal Disord Tech. 2015;28(6):202–210. doi: 10.1097/BSD.0000000000000287
  20. Palchik AB, Shabalov NP. Hypoxic-ischemic encephalopathy of newborns. Moscow: MEDPRESSinform; 2020. 302 p. (In Russ.)
  21. Pierson RN. Spinal and cranial injuries of the baby in breech deliveries. A clinical and pathological study of thirty-eight cases. Surg Gynecol Obstet. 1923;37:802–810.
  22. Towbin A. Spinal cord and brain stem injury at birth. Arch Pathol. 1964;77:620–632.
  23. Towbin A. Latent spinal cord and brain stem injury in newborn infants. Dev Med Child Neurol. 1969;11(1):54–68. doi: 10.1111/j.1469-8749.1969.tb01395.x
  24. Khasanov A.A., Davydova M.A. Causes of birth injuries of the spinal cord of the fetus. Kazan Medical Journal. 1981;62(4):2 7–30. doi: 10.17816/kazmj86880
  25. Friede RL. Developmental neuropathology. 2 nd edit. New York: Springer-Verlag; 1989. doi: 10.1007/978-3-642-73697-1
  26. Pape KE. Developmental and maladaptive plasticity in neonatal SCI. Clin Neurol Neurosurg. 2012;114(5):475–482. doi: 10.1016/j.clineuro.2012.01.002
  27. Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol. 2014;13(12):1241–1256. doi: 10.1016/S1474-4422(14)70144-9
  28. Dubowitz LMS, Dubowitz V, Mercuri E. The neurological assessment of the pre-term and full-term infant. In: Clinics in developmental medicine. London: MacKeithPress; 1999. 155 р.
  29. Finger AB. Lectures on neurology of development. Moscow: MEDPRESSinform; 2021. 472 p. (In Russ.)
  30. Саrbajal R, Paupe A, Hoenn E, et al. APN: evaluation behavioral scale of acute pain in newborn infants. Arch Pedaiatr. 1997;4(7): 623–628. doi: 10.1016/s0929-693x(97)83360-x
  31. Palchik AB, Bochkareva SA, Shabalov NP, et al. Pain in newborns and infants. Methodological recommendations of the Ministry of Health of the Russian Federation. Saint Petersburg; 2015. 27 p. (In Russ.)
  32. MacKinnon JA, Perlman M, Kirpalani H, et al. Spinal cord injury at birth: diagnostic and prognostic data in twenty-two patients. J Pediatr. 1993;122(3):431–437. doi: 10.1016/s0022-3476(05)83437-7
  33. Byers RK. Spinal-cord injuries during birth. Dev Med Child Neurol. 1975;17(1):103–110. doi: 10.1111/j.1469-8749.1975.tb04967.x
  34. Mills JF, Dargaville PA, Coleman LT, et al. Upper cervical spinal cord injury in neonates: The use of magnetic resonance imaging. J Pediatr. 2001;138(1):105–108. doi: 10.1067/mpd.2001.109195
  35. Leventhal HR. Birth injuries of the spinal cord. J Pediatr. 1960;56(4):447–453. doi: 10.1016/s0022-3476(60)80356-3
  36. Kishkun AA. Laboratory studies in neonatology. Moscow: GEOTAR-Media; 2022. 592 p. (In Russ.)
  37. Ratner AYu. Birth injuries of the spinal cord in children. Kazan: Kazan University; 1978. 216 p. (In Russ.)
  38. Rehan VK, Seshia MMK. Spinal cord birth injury-diagnostic difficulties. Arch Dis Childh. 1993;69(1S):92–94. doi: 10.1136/adc.69.1_spec_no.92
  39. Jain L. School outcome in late preterm infants: a cause for concern. J Pediatr. 2008;153(1):5–6. doi: 10.1016/j.jpeds.2008.03.001
  40. Blount J, Doughty K, Tubbs RS, et al. In utero spontaneous cervical thoracic epidural hematoma imitating spinal cord birth injury. Pediatr Neurosurg. 2004;40(1):23–27. doi: 10.1159/000076573
  41. Berck DJ, Mussalli GM, Manning FA. Atraumatic fetal cervical spinal cord injury and cruciate paralysis. Obstet Gynecol. 1998;91(5-2): 833–834. doi: 10.1016/s0029-7844(97)00487-0
  42. Roig M, Ballesca M, Navarro C, et al. Congenital spinal cord haemangioblastoma: another cause of spinal cord section syndrome in the newborn. J Neurol Neurosurg Psych. 1988;51(8):1091–1093. doi: 10.1136/jnnp.51.8.1091
  43. Coulter DM, Zhou H, Rorke-Adams LB. Catastrophic intrauterine spinal cord injury caused by an arteriovenous malformation. J Perinatol. 2007;27(3):186–189. doi: 10.1038/sj.jp.7211648
  44. Goetz E. Neonatal spinal cord injury after an uncomplicated vaginal delivery. Pediatr Neurol. 2010;42(1):69–71. doi: 10.1016/j.pediatrneurol.2009.08.006
  45. Fenger-Gron J, Kock K, Nielsen RG, et al. Spinal cord injury at birth: a hidden causative factor. Acta Paediatr. 2008;97(6):824–826. doi: 10.1111/j.1651-2227.2008.00768.x
  46. Morgan C, Newell SJ. Cervical spinal cord injury following cephalic presentation and delivery by Caesarean section. Dev Med Child Neurol. 2001;43(4):274–276. doi: 10.1017/s0012162201000512
  47. Hedderly T, Chalmers S, Fox G, Hughes E. Extensive cervical spinal cord lesion with late foetal presentation. Acta Paediatrica. 2005;94(2):245–247. doi: 10.1111/j.1651-2227.2005.tb01901.x
  48. Ebinger F, Boor R, Bruhl K, Reitter B. Cervical spinal cord atrophy in the atraumatically born neonate: one form of prenatal or perinatal ischaemic insult? Neuropediatrics. 2003;34(1):45–51. doi: 10.1055/s-2003-38621
  49. Schaffer AJ, Avery ME. Diseases of the newborn. Philadelphia: W.B. Saunders; 1971.
  50. Babyn PS, Chuang SH, Daneman A, Davidson GS. Sonographic evaluation of spinal cord birth trauma with pathologic correlation. AJR Am J Radiol. 1988;151(4):765–768. doi: 10.2214/ajr.151.4.763
  51. Lanska MJ, Roessmann U, Wiznitzer M. Magnetic resonance imaging in cervical cord birth injury. Pediatrics. 1990;85(5):760–764. doi: 10.1542/peds.85.5.760
  52. Simanovsky N, Stepensky P, Hiller N. The use of ultrasound for the diagnosis of spinal hemorrhage in a newborn. Pediatr Neurol. 2004;31(4):295–297. doi: 10.1016/j.pediatrneurol.2004.04.004
  53. Barkovich AJ, Raybaud C. Pediatric neuroimaging. 5 th ed. Philadelphia: Lippincott Williams and Wilkins; 2012.
  54. Dimario FJ, Wood BP. Radiological case of the month-transsection of the spinal cord associated with breech delivery. Am J Dis Child. 1992;146(3):351–352. doi: 10.1001/archpedi.1992.02160150091029
  55. Minami T, Ise K, Kukita J, et al. A case of neonatal spinal cord injury: magnetic resonance imaging and somatosensory evoked potentials. Brain Dev. 1994;16(1):57–60. doi: 10.1016/0387-7604(94)90114-7
  56. Ministry of Health of the Republic of Kazakhstan. Neonatal resuscitation. Clinical protocols. Kazakhstan; 2023. 14 p. (In Russ.)
  57. Yilmaz T, Kaptanoglu E. Current and future medical therapeutic strategies for the functional repair of spinal cord injury. World J Orthop. 2015;6(1):42–55. doi: 10.5312/wjo.v6.i1.42
  58. Grant RA, Quon JL, Abbed KM. Management of acute traumatic spinal cord injury. Curr Treat Options Neurol. 2015;17(2):334. doi: 10.1007/s11940-014-0334-1
  59. All AH, Gharibani P, Gupta S, et al. Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS One. 2015;10(1):e0116933. doi: 10.1371/journal.pone.0116933
  60. Stenudd M, Sabelstrom H, Frisen J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 2015;72(2):235–237. doi: 10.1001/jamaneurol.2014.2927
  61. Shin JE, Jung K, Kim M, et al. Brain and spinal cord injury repair by implantation of human neural progenitor cells seeded onto polymer scaffolds. Exp Mol Med. 2018;50:1–18. doi: 10.1038/s12276-018-0054-9
  62. Mayo JN, Kauer SD, Brumley MR, Bearden SE. Pericytes improve locomotor recovery after spinal cord injury in male and female neonatal rats. Microcirculation. 2020;27(7):e12646. doi: 10.1111/micc.12646
  63. Li Y, He X, Kawaguchi R, et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature. 2020;587(7835):613–618. doi: 10.1038/s41586-020-2795-6
  64. Hakim R, Zachariadis V, Sankavaram SR, et al. Spinal cord injury induces permanent reprogramming of microglia into a disease associated state which contributes to functional recovery. J Neurosci. 2021;41(40):8441–8459. doi: 10.1523/JNEUROSCI.0860-21.2021
  65. Alvarez Z, Kolberg-Edelbrock AN, Sasselli IR, et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science. 2021;374(6569):848–856. doi: 10.1126/science.abh3602
  66. Ratner AYu. Neurology of newborns: acute period and late complications. Moscow: BINOM; 2008. 368 p. (In Russ.)
  67. Vialle R, Pietin-Vialle C, Vinchon M, et al. Birth-related spinal cord injuries: a multicentric review of nine cases. Childs Nerv Syst. 2008;24(1):79–85. doi: 10.1007/s00381-007-0437-z
  68. Gilgoff RL, Gilgoff IS. Long-term follow-up of home mechanical ventilation in young children with spinal cord injury and neuromuscular conditions. J Pediatr. 2003;142(5):476–480. doi: 10.1067/mpd.2003.47
  69. Lazar MR, Salvaggio AT. Hyperextension of the fetal head in breech presentation. Obstet Gynecol. 1959;14(6):198–199. doi: 10.1097/00006254-195912000-00016
  70. Hellstrom B, Sallmander U. Prevention of spinal cord injury in hyperextension of the fetal head. JAMA. 1968;204(12):1041–1044. doi: 10.1001/jama.1968.03140250021005
  71. Bhagwanani SG, Price HV, Laurence KM, Ginz B. Risks and prevention of cervical cord injury in the management of breech presentation with hyperextension of the fetal head. Am J Obstet Gynecol. 1973;115(8):1159–1161. doi: 10.1016/0002-9378(73)90573-5
  72. Bresnan MJ, Abroms IF. Neonatal spinal cord transection secondary to intrauterine hyperextension of the neck in breech presentation. J Pediatr. 1974;84(5):734–737. doi: 10.1016/s0022-3476(74)80022-3
  73. Daw E. Hyperextension of the head in breech presentation. Am J Obstet Gynecol. 1974;119(4):564–565. doi: 10.1016/0002-9378(74)90222-1
  74. Caterini H, Langer A, Sama JC. Fetal risk in hyperextension of the fetal head in breech presentation. Am J Obstet Gynecol. 1975;123(6):632–636. doi: 10.1016/0002-9378(75)90887-x
  75. Wilcox HL. The attitude of the fetus in breech presentation. Am J Obstet Gynecol. 1949;58(3):478–487. doi: 10.1016/0002-9378(49)90291-4
  76. Westgren M, Grundsell H, Ingemarsson I, et al. Hyperextension of the fetal head in breech presentation: A study with long-term follow-up. Br J Obstet Gynecol. 1981;88(2):101–104. doi: 10.1111/j.1471-0528.1981.tb00949.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Algorithm of physician’s actions in neonatal birth injury of the spinal cord

Download (114KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.