The glymphatic system: methods of study, role in neurodegenerative diseases and brain tumors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The glymphatic system is a newly discovered macroscopic system for the excretion of soluble proteins and metabolites of the central nervous system, first described in vivo in 2012. It is formed by aquaporin-4 proteins in the legs of astroglial cells and uses a system of perivascular tunnels. From the first description to the present day, many extensive studies of the glymphatic system have been conducted, but there are still many unresolved issues. Most of the work described the composition of the glymphatic system, and recently, the genetic apparatuses responsible for the functioning of functional units responsible for the stable functioning of the system have also been actively studied. To date, disorders in the work of the glymphatic system are considered as a risk factor for the development of age-related brain changes, neurovascular and neurodegenerative diseases, as well as impaired recovery from injuries to the brain. Many studies have highlighted the relationship between glymphatic system dysfunction and neurodegeneration associated with traumatic brain injury. There is also a part of the work devoted to the role of glymphatic system in the development of peritumoral edema in tumors of brain. However, so far, there is insufficient data on the role of glymphatic system in the localization of primary and secondary brain tumors. The purpose of this review is to summarize the currently available results in the scientific community on the composition of glymphatic system, its visualization methods, and its role both in the normal state of the body and in pathological processes: traumatic brain injuries, neurodegenerative diseases and malignant neoplasms of the brain.

Full Text

Restricted Access

About the authors

Alexander I. Budko

National Research Center “Kurchatov Institute”

Author for correspondence.
Email: Budko_AI@nrcki.ru
ORCID iD: 0009-0007-3354-1646
SPIN-code: 2623-4530

Postgraduate Student

Russian Federation, Moscow

Anna A. Prokhorycheva

National Research Center “Kurchatov Institute”

Email: Prokhorycheva_AA@nrcki.ru
ORCID iD: 0009-0001-5226-0803
SPIN-code: 5543-4462

Postgraduate Student

Russian Federation, Moscow

Olga M. Ignatova

National Research Center “Kurchatov Institute”

Email: Ignatova_OM@nrcki.ru
ORCID iD: 0000-0003-2763-3935
SPIN-code: 9352-3233

Research Laboratory Asistant

Russian Federation, Moscow

Yulia I. Vecherskaya

National Research Center “Kurchatov Institute”

Email: Vecherskaya_YI@nrcki.ru
ORCID iD: 0009-0000-2489-4588

PhD student

Russian Federation, Moscow

Stanislav A. Fokin

National Research Center “Kurchatov Institute”

Email: Fokin_SA@nrcki.ru

MD, PhD, Director of the Kurchatov Сomplex of Medical Primatology

Russian Federation, Moscow

Mariya A. Pahomova

Saint Petersburg State Pediatric Medical University

Email: mariya.pahomova@mail.ru
ORCID iD: 0009-0002-4570-8056
SPIN-code: 3168-2170

Senior Research Associate, Research Center

Russian Federation, Saint Petersburg

Andrey G. Vasiliev

Saint Petersburg State Pediatric Medical University

Email: avas7@mail.ru
ORCID iD: 0000-0002-8539-7128
SPIN-code: 1985-4025

MD, PhD, Dr. Sci. (Medicine), Professor, Head of the Department of Pathological Physiology with a Course in Immunology

Russian Federation, Saint Petersburg

Alexander P. Trashkov

National Research Center “Kurchatov Institute”

Email: Trashkov_AP@nrcki.ru
ORCID iD: 0000-0002-3441-0388
SPIN-code: 4231-1258

MD, PhD, Associate Professor

Russian Federation, Moscow

References

  1. Kaprin AD, Starinsky BB, Shakhzadova AO, editors. The state of oncologic care for the Russian population in 2023. Moscow: P.A. Herzen MNIOI — branch of FGBU “NMRC Radiology” of the Ministry of Health of Russia; 2024. (In Russ.)
  2. Turkin AM, Melnikova-Pitskhelauri TV, Fadeeva LM, et al. Factors influencing peritumoral edema in meningiomas: CT- and MRI-based quantitative assessment. Burdenko’s Journal of Neurosurgery. 2023;87(4):1726. doi: 10.17116/neiro20238704117 EDN: VJJKWW
  3. Achariyar TM, Li B, Peng W, et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener. 2016;11:74. doi: 10.1186/s13024-016-0138-8
  4. Al Masri M, Corell A, Michaelsson I, et al. The glymphatic system for neurosurgeons: a scoping review. Neurosurg Rev. 2024;47(1):61. doi: 10.1007/s10143-024-02291-6
  5. Plog BA, Mestre H, Olveda GE, et al. Transcranial optical imaging reveals a pathway for optimizing the delivery of immunotherapeutics to the brain. JCI Insight. 2018;3(20):126138. doi: 10.1172/jci.insight.120922
  6. Benveniste H, Lee H, Ozturk B, et al. Glymphatic cerebrospinal fluid and solute transport quantified by MRI and PET imaging. Neuroscience. 2021;474:63–79. doi: 10.1016/j.neuroscience.2020.11.014
  7. Cagney DN, Martin AM, Catalano PJ, et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro Oncol. 2017;19(11): 1511–1521. doi: 10.1093/neuonc/nox077
  8. Toh CH, Siow TY, Castillo M. Peritumoral brain edema in metastases may be related to glymphatic dysfunction. Front Oncol. 2021;11:725354. doi: 10.3389/fonc.2021.725354
  9. Chen J, Wang L, Xu H, et al. The lymphatic drainage system of the CNS plays a role in lymphatic drain-age, immunity, and neuroinflammation in stroke. J Leukoc Biol. 2021;110(2):283–291. doi: 10.1002/JLB.5MR0321-632R
  10. Dekkers OM, Karavitaki N, Pereira AM. The epidemiology of aggressive pituitary tumors (and its challenges). Rev Endocr Metab Disord. 2020;21(2):209–212. doi: 10.1007/s11154-020-09556-7
  11. Ding Z, Fan X, Zhang Y, et al. The glymphatic system: a new perspective on brain diseases. Front Aging Neurosci. 2023;15:1179988. doi: 10.3389/fnagi.2023.1179988
  12. Gaberel T, Gakuba C, Goulay R, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke. 2014;45(10):3092–3096. doi: 10.1161/STROKEAHA.114.006617
  13. Gouveia-Freitas K, Bastos-Leite AJ. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology. 2021;63:1581–1597. doi: 10.1007/s00234-021-02718-7
  14. Hu X, Deng Q, Ma l, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30(3):229–243. doi: 10.1038/s41422-020-0287-8
  15. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/scitranslmed.3003748
  16. Patterson C. World Alzheimer report 2018. The state of the art of dementia research: New frontiers. London; 2018. 48 p.
  17. Jullienne A, Obenaus A, Ichkova A, et al. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res. 2016;94(7):609–622. doi: 10.1002/jnr.23732
  18. Hablitz LM, Nedergaard M. The glymphatic system. Curr Biol. 2021;31(20):1371–1375. doi: 10.1016/j.cub.2021.08.026
  19. Lee DS, Suh M, Sarker A, Choi Y. Brain glymphatic/lymphatic imaging by MRI and PET. Nucl Med Mol Imaging. 2020;54(5):207–223. doi: 10.1007/s13139-020-00665-4
  20. Marinova L, Georgiev R, Evgeniev N. Hypothesis on the distant spread of HER2-positive breast. Glob Imaging Insights. 2020;5:1–8. doi: 10.15761/GII.1000206
  21. Li L, Ding G, Zhang L, et al. Glymphatic transport is reduced in rats with spontaneous pituitary tumor. Front Med. 2023;10:1189614. doi: 10.3389/fmed.2023.1189614
  22. Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018;9:4878. doi: 10.1038/s41467-018-07318-3
  23. Myllylä T, Harju M, Korhonen V, et al. Assessment of the dynamics of human glymphatic system by near-infrared spectroscopy. J Biophotonics. 2018;11(8):e201700123. doi: 10.1002/jbio.201700123
  24. Naganawa S, Taoka T, Ito R, Kawamura M. The glymphatic system in humans: investigations with magnetic resonance imaging. Investig Radiol. 2024;59(1):1–12. doi: 10.1097/RLI.0000000000000969
  25. Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res. 2023;93:101170. doi: 10.1016/j.preteyeres.2023.101170
  26. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11): 1016–1024. doi: 10.1016/S1474-4422(18)30318-1
  27. Salehpour F, Khademi M, Bragin DE, DiDuro JO. Photobiomodulation therapy and the glymphatic system: promising applications for augmenting the brain lymphatic drainage system. Int J Mol Sci. 2022;23(6):2975. doi: 10.3390/ijms23062975
  28. Keil SA, Braun M, O’Boyle R, et al. Dynamic infrared imaging of cerebrospinal fluid tracer influx into the brain. Neurophotonics. 2022;9(3):031915. doi: 10.1117/1.NPh.9.3.031915
  29. Schubert JJ, Veronese M, Marchitelli L, et al. Dynamic 11C-PiB PET shows cerebrospinal fluid flow alterations in alzheimer disease and multiple sclerosis. J Nucl Med. 2019;60(10):1452–1460. doi: 10.2967/jnumed.118.223834
  30. Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral microcirculation, perivascular unit, and glymphatic system: Role of Aquaporin-4 as the gatekeeper for water homeostasis. Front Neurol. 2021;12:767470. doi: 10.3389/fneur.2021.767470
  31. Taoka T, Naganawa S. Glymphatic imaging using MRI. J Magn Reson Imaging. 2020;51(1):11–24. doi: 10.1002/jmri.26892
  32. Thakkar RN, Kioutchoukova IP, Grifin I, et al. Mapping the glymphatic pathway using imaging advances. Multidisciplin Sci J. 2023;6(3):477–491. doi: 10.3390/j6030031
  33. Thrane VR, Thrane AS, Plog BA, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013;3:2582. doi: 10.1038/srep02582
  34. Wang Q, Sawyer LA, Sung M-H, et al. Cajal bodies are linked to genome conformation. Nat Commun. 2016;7:10966. doi: 10.1038/ncomms10966
  35. Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Primers. 2015;1:15017. doi: 10.1038/nrdp.2015.17
  36. Xu D, Zhou J, Mei H, et al. Impediment of cerebrospinal fluid drainage through glymphatic system in glioma. Front Oncol. 2022;11:790821. doi: 10.3389/fonc.2021.790821

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.