Clinical case, dynamics of the disease in a patient with Emery–Dreyfus muscular dystrophy caused by a mutation in the SYNE2 gene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Emery–Dreyfus muscular dystrophy is a genetically heterogeneous disease with X-linked recessive, autosomal dominant and autosomal recessive forms, which can be caused by mutations in the EMD, LMNA, SYNE1 and SYNE2 genes. Emery–Dreyfus muscular dystrophy caused by a mutation in the SYNE2 gene is characterized by an autosomal dominant mode of inheritance with the onset of clinical symptoms in childhood. This form is characterized primarily by proximal muscle weakness of the upper and lower extremities and cardiac complications. The article describes a patient with Emery–Dreyfus muscular dystrophy caused by a mutation in the SYNE2 gene. The article presents clinical and instrumental examination methods, the dynamics of the course of the disease. During the observation period of 6 months, the patient showed a significant decrease in motor functions — a decrease in the distance of the 6-minute walking test, the ability to walk and move (D1) on the scale “motor function measure”, the results of speed tests. The patient also has a steadily progressive impairment of respiratory and bulbar functions, which requires regular dynamic monitoring, every day monitoring of oxygen saturation, and night and daytime non-invasive artificial ventilation is indicated. Taking into account the literature data and previously described clinical cases, the patient is characterized by a high risk of developing heart rhythm disturbances and dilated cardiomyopathy, which requires proper monitoring at least once every 6 months.

Full Text

Restricted Access

About the authors

Vasily M. Suslov

Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: vms.92@mail.ru
ORCID iD: 0000-0002-5903-8789
SPIN-code: 4482-9918

MD, PhD, Associate Professor of the Department of Rehabilitation of the Faculty of Postgraduate and Additional Professional Education

Russian Federation, Saint Petersburg

Dmitry O. Ivanov

Saint Petersburg State Pediatric Medical University

Email: spb@gpma.ru
ORCID iD: 0000-0002-0060-4168
SPIN-code: 4437-9626

MD, PhD, Dr. Sci. (Medicine), Professor, Head of the Department of Neonatology with Courses in Neurology and Obstetrics-Gynecology of the Faculty of Postgraduate and Additional Professional Education, Rector

Russian Federation, Saint Petersburg

Dmitry I. Rudenko

Saint Petersburg State Pediatric Medical University

Email: dmrud_h2@mail.ru
ORCID iD: 0009-0008-2770-6755
SPIN-code: 8002-0690

MD, Dr. Sci. (Medicine), Assistant Professor, Department of Rehabilitation of the Faculty of Postgraduate and Additional Professional Education

Russian Federation, Saint Petersburg

Larisa N. Liberman

Saint Petersburg State Pediatric Medical University

Email: Lalieber74@gmail.com
ORCID iD: 0009-0002-5791-6872
SPIN-code: 5805-9232

Assistant Professor, Department of Rehabilitation of the Faculty of Postgraduate and Additional Professional Education

Russian Federation, Saint Petersburg

Galina A. Suslova

Saint Petersburg State Pediatric Medical University

Email: docgas@mail.ru
ORCID iD: 0000-0002-7448-762X
SPIN-code: 8110-0058

MD, Dr. Sci. (Medicine), Professor, Head of the Department of Rehabilitation of the Faculty of Postgraduate and Additional Professional Education

Russian Federation, Saint Petersburg

References

  1. Gorbunova VN. Molecular genetics — a way to the individual personalized medicine. Pediatrician (St. Petersburg). 2013;4(1): 115–121. doi: 10.17816/PED41115-121 EDN: RAWSBL
  2. Zemtsovsky EV, Martynov AI, Mazurov VI, et al. Hereditary disorders of connective tissue. In: Organov RG, Mamedov MN, editors. National Clinical Recommendations. 2nd ed. Moscow: Sicily-Polygraph; 2009. P. 221–250. EDN SXLNNL (In Russ.)
  3. Suslov VM, Pozdnyakov AV, Ivanov DO, et al. Quantitative MRI as marker of the effectiveness of steroid treatment in patients with Duchenne muscular dystrophy. Pediatrician (St. Petersburg). 2019;10(4):31–37. doi: 10.17816/PED10431-37 EDN: XVWVYI
  4. Bonne G, Quijano-Roy S. Emery-Dreifuss muscular dystrophy, laminopathies, and other nuclear envelopathies. Handb Clin Neurol. 2013;113:1367. doi: 10.1016/B978-0-444-59565-2.00007-1
  5. Boriani G, Gallina M, Merlini L, et al. Clinical relevance of atrial fibrillation/flutter, stroke, pacemaker implant, and heart failure in Emery–Dreifuss muscular dystrophy: a long-term longitudinal study. Stroke. 2003;34(4):901–908. doi: 10.1161/01.STR.0000064322.47667.49
  6. Chen Z, Ren Z, Mei W, et al. A novel SYNE1 gene mutation in a Chinese family of Emery–Dreifuss muscular dystrophy-like. BMC Med Genet. 2017;18(1):63. doi: 10.1186/s12881-017-0424-5
  7. Connell PS, Jeewa A, Kearney DL, et al. A 14-year-old in heart failure with multiple cardiomyopathy variants illustrates a role for signal-to-noise analysis in gene test re-interpretation. Clin Case Rep. 2018;7(1):211–217. doi: 10.1002/ccr3.1920
  8. Gayathri N, Taly AB, Sinha S, et al. Emery dreifuss muscular dystrophy: a clinico-pathological study. Neurol India. 2006;54(2): 197–199.
  9. Heller SA, Shih R, Kalra R, Kang PB. Emery–Dreifuss muscular dystrophy. Muscle Nerve. 2020;61(4):436–448. doi: 10.1002/mus.26782
  10. Jimenez-Escrig A, Gobernado I, Garcia-Villanueva M, Sanchez-Herranz A. Autosomal recessive Emery–Dreifuss muscular dystrophy caused by a novel mutation (R225Q) in the lamin A/C gene identified by exome sequencing. Muscle Nerve. 2012;45(4):605–610. doi: 10.1002/mus.22324
  11. Lee SJ, Lee S, Choi E, et al. A novel SYNE2 mutation identified by whole exome sequencing in a Korean family with Emery–Dreifuss muscular dystrophy. Clin Chim Acta. 2020;506:50–54. doi: 10.1016/j.cca.2020.03.021
  12. Li Y-L, Cheng X-N, Lu T, et al. Syne2b/nesprin-2 is required for actin organization and epithelial integrity during epiboly movement in zebrafish. Front Cell Dev Biol. 2021;9:671887. doi: 10.3389/fcell.2021.671887
  13. Madej-Pilarczyk A, Kochański A. Emery–Dreifuss muscular dystrophy: the most recognizable laminopathy. Folia Neuropathol. 2016;54(1):1–8. doi: 10.5114/fn.2016.58910
  14. Madej-Pilarczyk A. Clinical aspects of Emery–Dreifuss muscular dystrophy. Nucleus. 2018;9(1):268–274. doi: 10.1080/19491034.2018.1462635
  15. Mah JK, Korngut L, Fiest KM, et al. A systematic review and meta-analysis on the epidemiology of the muscular dystrophies. Can J Neurol Sci. 2016;43(1):163. doi: 10.1017/cjn.2015.311
  16. Marchel M, Madej-Pilarczyk A, Tymińska A, et al. Echocardiographic features of cardiomyopathy in Emery–Dreifuss muscular dystrophy. Cardiol Res Pract. 2021;2021:8812044. doi: 10.1155/2021/8812044
  17. Mercuri E, Jungbluth H, Muntoni F. Muscle imaging in clinical practice: diagnostic value of muscle magnetic imaging in inherited neuromuscular disorders. Curr Opin Neurol. 2005;18(5):126–137. doi: 10.1097/01.wco.0000183947.01362.fe
  18. Muchir A, Worman HJ. Emery–Dreifuss muscular dystrophy. Curr Neurol Neurosci Rep. 2007;7(1):78–83. doi: 10.1007/s11910-007-0025-3
  19. Puckelwartz M, McNally EM. Emery–Dreifuss muscular dystrophy. Handb Clin Neurol. 2011;101:155–166. doi: 10.1016/B978-0-08-045031-5.00012-8
  20. Worman HJ, Ostlund C, Wang Y. Diseases of the nuclear envelope. Cold Spring Harb Perspect Biol. 2010;2:a000760. doi: 10.1101/cshperspect.a000760
  21. Zhang Q, Bethmann C, Worth NF, et al. Nesprin-1 and -2 are involved in the pathogenesis of Emery-Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet. 2007;16(23):2816–2833. doi: 10.1093/hmg/ddm238

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient, 10 years old: asymmetry of the shoulder girdle, scapular winging, lumbar hyperlordosis

Download (241KB)
3. Fig. 2. Patient, 10 years old: hypomimia, weakness of the orbicularis oris muscles, asymmetry of the facial muscles

Download (129KB)
4. Fig. 3. Patient, 10 years old: weakness of the paravertebral muscles and neck extensor muscles, aggravated by physical activity

Download (177KB)
5. Fig. 4. Magnetic resonance imaging of the skeletal muscles: а, of the pelvic girdle, thighs and legs of the patient; b, of the shoulder girdleof the patient. Т1-ВИ, T1-weighted images; STIR, Short Tau Inversion Recovery

Download (180KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.