Сerebral oxymetry in neonatology

Cover Page

Abstract


The frequency of disturbance the functional development of newborn brain after intrauterine and birth asphyxia determines the necessity the finding objective methods of timely diagnosis the alteration of brain oxygenation for the target therapy. During last years the special attention of investigators was attracted to use for this purpose in newborns the noninvasive, informative and portable method near-infrared spectroscopy (NIRS). Cerebral oxymetry successfully used for estimation brain circulation of the blood and blood volume in the brain vessels with combination constant monitoring blood pressure. This review outlines the basic principles, advantages NIRS technology in clinical studies brain oxygenation in healthy full term and premature newborns and also after asphyxia, vacuum extraction and cesarean section. Monitoring brain oxygenation in newborns which received cooling after heavy asphyxia permits during first 10 hours after birth to prognosis unfavorable outcome or fix the further strategy of treatment cerebral ischemia. Presented clinical use this method for treatment premature newborns with respiratory distress and circulatory insufficiency. It may help to determine the optimal target oxygen saturation. It is alsow useful monitoring during intensive therapy of extremely preterm neonates, due to the risk of impaired cerebral blood flow auto regulation in these patients. Indicated the perspectives of cerebral oxymetry in neonato logy for new diagnostic, treatment and prophylactic perinatal CNS damage.


Высокая частота нарушений функционального развития мозга у детей, перенесших внутриутробную гипоксию и асфиксию при рождении, определяет необходимость изыскания объективных методов своевременной диагностики изменений оксигенации ткани мозга и целенаправленного применения адекватной терапии. В последние годы особое внимание исследователей и клиницистов привлекает использование с этой целью у новорожденных детей неинвазивного, безопасного и достаточно информативного метода параинфракрасной спектроскопии (NIRS) [1, 18, 19, 29, 42, 44]. Технология метода основана на способности тканей пропускать свет в близком к инфракрасному диапазону (длина волн 700–1000 nm) и его поглощении такими хромофорами, как оксигемоглобин (Hb02), дезоксигемоглобин (HHb), цитохром С оксидаза, для каждого из которых характерен свой спектр поглощаемых волн [14, 35, 52]. Поскольку микроциркуляция обследуемого региона мозга включает артерии, вены и капилляры, то сатурация кислорода в этой зоне (rS02) показывает усредненное значение, 75–85 % которого определяет венозная кровь. Уровень кислородной насыщенности тканей мозга (rS02) — это отношение окисленного гемоглобина к общему гемоглобину, что выводится по формуле rS02 = HbO2 / (Hb02 + HHb). При этом NIRS отражает локальное насыщение кислорода (rS02) как динамический баланс между доставкой и потреблением кислорода мозговой тканью. Для вычисления количества кислорода, захваченного тканью мозга, предложена формула «фракционной тканевой экстракции кислорода»: FTOE = (SO2 – rSO2) / SO2, где SO2 — сатурация кислорода в артериальной крови, одновременно измеряемая с помощью пульсоксиметра [44, 52, 53]. Церебральная оксиметрия используется также для оценки мозгового кровотока [9, 21, 29] и объема крови в сосудах головного мозга в комбинации с постоянным мониторингом артериального давления [30, 57].

Параинфракрасная спектроскопия с целью неинвазивного мониторинга оксигенации мозга у новорожденных детей была впервые использована в 1985 году [7]. В последующие годы этот метод применялся для изучения патофизиологических изменений в тканях при различных формах перинатальной патологии [24, 56, 59], в сердечно-сосудистой хирургии с целью диагностики гипоксических состояний и профилактики послеоперационных осложнений [8, 20, 22, 27]. Поскольку он осуществляется без использования радиоактивных материалов [13] и, в отличие от ультразвуковой допплерометрии церебральных артерий, позволяет непрерывно оценивать изменение насыщения ткани мозга кислородом в процессе лечении патологических состояний, встал вопрос введения церебральной оксиметрии в клиническую практику с диагностической и прогностической целью [19, 26].

Изучение становления оксигенации мозга после рождения у доношенных детей показало, что она достигает 76–83 % уже к 7-й минуте жизни независимо от способа рождения и далее остается на том же уровне или снижается [2, 10, 40, 50, 53]. Выявлена у доношенных детей положительная корреляционная связь между сатурацией кислорода в ткани мозга и показателями пульсоксиметрии [34, 59]. Установлены референтные значения сатурации кислорода в ткани мозга и фракционной его экстракции у здоровых доношенных и недоношенных детей, не нуждающихся в реанимационной поддержке, и составлены центильные таблицы их изменений в первые 15 минут жизни [28, 39]. Подчеркивается, что уже в первые минуты жизни мозг ребенка имеет самый высокий уровень сатурации кислорода, а фракционная экстракция кислорода в ткани практически не меняется после 5-й минуты [51]. У новорожденных, извлеченных вакуум-экстрактором, в первые часы жизни наблюдаются более низкие показатели церебральной оксигенации [25], а более высокие у детей после операции кесарева сечения [46]. В последующие дни жизни церебральная оксигенация существенно не меняется и составляет у доношенных детей после естественных родов 77,9 ± 8,5 % [4]. Чем больше гестационный возраст ребенка, тем ниже показатели оксигенации мозга, но выше фракционная экстракция кислорода, причем онa коррелирует с частотой сердечных сокращений, дыхания и значениями SaO2 [42, 46].

Многочисленные исследования определили большое значение мониторинга церебральной оксигенации у родившихся в асфиксии новорожденных детей при оказании реанимационной помощи в родильном зале и в палате интенсивной терапии [47, 48], при коррекции гемодинамических нарушений, закрытии артериального протока и при других критических состояниях для своевременной коррекции гипо- или гипероксии мозга, а, следовательно, профилактики неблагоприятных последствий [21, 44, 47, 49]. Вместе с тем авторы указывают на значительные не только индивидуальные колебания показателей, но и в процессе мониторинга у каждого ребенка и подчеркивают необходимость проведения церебральной оксиметрии в сочетании с регистрацией ЭЭГ, артериального давления, пульсоксиметрией для выявления механизмов, лежащих в основе этих изменений [33, 52]. Результаты исследований у перенесших асфиксию доношенных детей выявили увеличение объема крови, нарушение ауторегуляции и скорости мозгового кровотока, предшествующее развитию энергетической недостаточности метаболических процессов, что изменяет функциональное состояние мозговых структур [57]. Показано, что мониторинг оксигенации мозга у детей, получающих гипотермию, позволяет уже в первые 10 часов жизни прогнозировать неблагоприятный исход или наметить дальнейшую стратегию лечения церебральной ишемии [32, 36, 55]. Сопоставление результатов мониторинга церебральной сатурации кислорода с клиническим состоянием новорожденных и с последствиями перинатальной патологии указало необходимость его проведения для раннего прогноза и выбора своевременной корригирующей терапии [3, 23, 54]. Метод церебральной оксиметрии также используется для изучения механизмов кортикальной активации и ее роли для развития мозга в период реабилитации [5].

Особое внимание исследователи уделяют оксиметрии мозга у глубоко недоношенных детей, которые могут испытывать церебральную гипоксию или гипероксию в связи с реанимационными мероприятиями и тяжестью дыхательных расстройств, сопровождающихся нестабильностью гемодинамики [12, 33]. Показано, что у детей с очень низкой массой тела уже к 7-й минуте жизни сатурация кислорода в ткани мозга составляет 61–84 % [15]. Метод применяется также для выявления изменений церебральной оксигенации в связи с колебаниями системной гемодинамики у больных недоношенных детей. Так, используя индекс церебральной оксигенации, авторы установили, что при низком артериальном давлении наблюдается нарушение ауторегуляции мозгового кровотока, что привело к развитию кровоизлияний в желудочки мозга у 43 % детей, имевших гестационный возраст менее 30 недель [16]. Другие показали, что у 53 % глубоко недоношенных детей наблюдается пассивная церебральная перфузия, соответствующая изменениям артериального давления, что лежит в основе развития перивентрикулярной лейкомаляции [49]. Изучение влияния различных методов оксигенотерапии на динамику сатурации кислорода в ткани мозга показало, что при уменьшении артериальной сатурации до 70–80 % происходит значительное снижение оксигенации и ишемическое повреждение ткани мозга [37, 58]. Церебральная оксигенация коррелирует со средним артериальным давлением у критически больных недоношенных детей [49], при ее снижении до 50 % у них в последующем наблюдается нарушение психомоторного развития [6]. Изменение оксигенации не выявлено при введении сурфактанта [41], хотя при этом отмечено увеличение объема крови в мозге ребенка [11]. При наличии эпизодов апноэ с брадикардией объем крови в мозге, измеренный с использованием параинфракрасной спектрометрии, значительно снижался [38].

Таким образом, данные литературы указывают на большие перспективы применения метода в неонатологии. Однако, анализируя уже имеющиеся многочисленные результаты его использования, авторы указывают на ряд ограничений для широкого внедрения в практику в связи с отсутствием больших популяционных исследований нормативных показателей [17, 19, 31, 43, 44]. Действительно, опубликованные результаты основаны на обследовании небольших групп новорожденных различного гестационного возраста с использованием разных приборов для проведения параинфракрасной спектроскопии. Необходимы дальнейшие комплексные исследования, включающие одновременную регистрацию показателей гемодинамики, напряжения углекислого газа, кислорода в крови и функционального состояния эритроцитов для выяснения патофизиологических механизмов, лежащих в основе изменений церебральной оксигенации у новорожденных детей, что позволит разработать новые подходы к ранней диагностике, лечению и профилактике перинатальных поражений ЦНС.

Inna I. Evsyukova

FSBSI “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott”

Author for correspondence.
Email: eevs@yandex.ru

Russian Federation, Saint Petersburg

MD, PhD, Dr Med Sci, Professor, Head of the Department of Physiology and Pathology of Newborns

  1. Эстрин В.В., Симонова А.В., Каушанская Е.Я. Транскраниальная церебральная оксиметрия у здоровых новорожденных // Российский вестник перинатологии и педиатрии. – 2011. – Т. 5. – № 3. – С. 29–32. [Estrin VV, Simonova AV, Kaushanskaya EYa. Transcranial cerebral oximetry in healthy newborn infants. Rossijskiy vestnik perinatologii i pediatrii. 2011;5(3):29-32. (In Russ.)]
  2. Bailey SM, Hendricks-Munoz KD, Mally P. Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns. Am J Perinatol. 2014;31:339-44. doi: 10.1055/s-0033-1349894.
  3. Balegar RR, Stark MJ, Briggs N, Andersen CC. Early cerebral oxygen extraction and risk of death or sonographic brain injury in very preterm infants. J Pediatr. 2014;164(3):475-80. doi: 10.1016/j.jpeds.2013.10.041.
  4. Bernal NP, Hoffman GM, Ghanayem NS, Arca MJ. Cerebral and somatic near-infrared spectroscopy innormal newborns. J Pediatr Surg. 2010;45:1306-10. doi: 10.1016/j.jpedsurg.2010.02.110.
  5. Biallas M, Trajkovic I, Hagmann C, et al. Multimodal recording of brain activity in term newborn during photic stimulation by near-infrared spectroscopy and electroencephalography. J Biomed Opt. 2012;17(8):086011-1. doi: 10.1117/1.JBO.17.8.086011.
  6. Bonestroo HJ, LemmersPM, Baerts W, van Bel F. Effect antihypotensive treatment on cerebral oxyge nation of preterm infants without PDA. Pediatrics. 2011;128:1502-10. doi: 10.1542/peds.2010-3791.
  7. Brazy JE, Lewis DW, Mitnisk MH, Jobsis FF. Noninvasive monitoring of cerebral oxygenation in preterm infants:preliminary observation. Pediatrics. 1985;75:217-25. PMID: 2982128
  8. Chock VY, Ramamoorthy C, Van Neurs KP. Cerebral oxygenation during different treatment strategies for a patent ductus arterious. Neonatology. 2011;100(3):233-40. doi: 10.1159/000325149.
  9. Cooke RW, Rolfe P, Howat P. Apparent cerebral blood flow in newborns with respiratory disease. Dev Med Child Neurol. 1979;21:154-60.
  10. Dani C, Martelli E, Bertini G, et al. Haemodynamic changes in the brain after vaginal delivery and caesarean section in healthy term infants. Br J Obstet Gynaecol. 2002;109:202-6. PMID: 11888103.
  11. Dorepaal CA, Benders MJ, Steendijk P, et al. Crebral haemodynamics and oxygenation in preterm infants after low-vs. high-dose surfactant inplacement therapy. Biol Neonate. 1993;6(4):193-200. PMID: 8260553.
  12. Drayna PC, Abramo TG, Eatrada C. Infra-read spectroscopy in the critical setting. Pediatr Emerg Care. 2011;27(5): 432-9. doi: 10.1097/PCC.0b013e318221173a.
  13. Elser HE, Holditch-Davis D, Brandon DH. Cerebral Oxygenation Monitoring: A strategy to detect IVH and PVL. Newborn Infant Nurs Rev. 2011;11(3):153-9. doi: 10.1053/j.nainr.2011.07.007.
  14. Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29(4):463-87. PMID: 15328595.
  15. Fuchs H, Lindner W, Buschko A, et al. Brain oxygenations monitoring during neonatal resuscitation of very low birth weight infants. J Perinatol. 2012;32 (5):356-62. doi: 10.1038/jp.2011.110.
  16. Gilmore MM, Atone BS, Shepard JA, et al. Relationship between cerebrovascular autoregulation and blood pressure in the premature infant. J Perinatol. 2011;31(11):722-9. doi: 10.1038/jp.2011.17.
  17. Goff DA, Buckley EM, Durduran T, et al. Noninvasive Cerebral Perfusion imaging in High-Risk Neonates. Semin Perinatol. 2010;34(1):46-56. doi: 10.1053/j.semperi.2009.10.005.
  18. Greisen G. Is near-infrared spectroscopy living up to its promises? Seminars in Fetal Neonatal Med. 2006;11:498-502. doi: 10.1016/j.siny.2006.07.010.
  19. Greisen G, Leung T, Wolf M. Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care? Phil Trans R Soc A. 2011;369:4440-51. doi: 10.1098/rsta.2011.0261.
  20. Gupta D, Bzeih R, Zestos MM. Cerebral “hyperoxygenation” with inhalational induction of anesthesia in children:a retrospective comparison between vasoparalytic sevoflurane vs. vasoneutral fen tanyl. Middle East J Anaesthesiol. 2014;22(5):457-66. PMID: 25137862.
  21. Hou X, Ding H, Teng Y, et al. NIRS study of cerebral oxygenation ad hemodynamics in neonate at birth. Conf. Proc. IEEE Eng Med Biol Soc. 2011;11:1229-32. doi: 10.1109/IEMBS.2011.6090289.
  22. Huning BM, Astour B, Konig S, et al. Cerebral blood volume changes during closure by surgery of patent ductus arteriosus. Arch. Dis. Child. Fetal Neonatal Ed. 2008;93(4):261-4. doi: 10.1136/adc.2007.121715.
  23. Hyttel-Sorensen S, Pellicer A, Alderliesten T, et al. Cerebral near infrared spectroscopy oxymetry in extremely preterm infants:phase II randomized clinical trial BMJ. J Resuscitation. 2013;1(14):120. doi: 10.1186/1745-6215-14-120.
  24. Johnston AJ, Steiner LA, Gupta AK, Menon DK. Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. British J Anaesth. 2003;90(6):774-86. PMID: 12765894.
  25. Karen T, Wolf M, Nef R, et al. Changes in cerebral oxygenation during early postnatal adaptation in newborns delivered by vacuum extraction measured by near-infrared spectroscopy. BMC Pediatrics. 2014;14:1-8. doi: 10.1186/1471-2431-14-21.
  26. Kenosi M, Naulaers G, Ryan CA, Dempsey EM. Current research suggests that the future looks brighter for cerebral oxygenation monitoring in preterm infants. Acta Paediatrca. 2015;104:225-31. doi: 10.1111/apa.12906.
  27. Koch HVV, Hansen TG. Perioperative use of cerebral and renal near-infrared spectroscopy in neonates:a 24-h observational study. Paediatr Anaesth. 2016;26(2):190-8. doi: 10.1111/pan.12831.
  28. Kratky E, Pichier G, Rehak T, et al. Regional cerebral oxygen saturation in newborn infants in the first 15 min of life after vaginal delivery. Physiol Meas. 2012;33(1):95-102. doi: 10.1088/0967-3334/33/1/95.
  29. Kusaka T, Isobe K, Yasuda S, et al. Evaluation of cerebral circulation and oxygen metabolism in infants using near-infrared light. Brain Dev. 2014;36(4):277-83. doi: 10.1016/j.braindev.2013.05.011.
  30. Liem KD, Greisen G. Monitoring of cerebral haemodynamics in newborn infants. Early Human Develop. 2010;86:155-8. doi: 10.1016/j.earlhumdev.2010.01.029.
  31. Limperopoulos C, Gauvreau KK, O’Leary H, et al. Cerebral hemodynamic changes during intensive care of preterm infants. Pediatrics. 2008;122:1006-13. doi: 10.1542/peds.2008-0768.
  32. Massaro AN, Govindan RB, Vezina G, et al. Impaired cerebral autoregulation and brain injury in newborns with xypoxic-ischemic encephalopathy treated with hypothermia. J Neurophysiol. 2015;114(20):118-24. doi: 10.1152/jn.00353.2015.
  33. Noori S, Wiodaver A, Gottipati V, et al. Transitional changes in cardiac and cerebral hemodynamics in term neonates at birth. J Pediatr. 2012;160(6):943-8. doi: 10.1016/j.jpeds.2011.12.008.
  34. Noori S, Stavroudis TA, Seri I. Systemic and cerebral hemodynamics during the transitional period after premature birth. Clin Perinatol. 2009;36(4):723-36. doi: 10.1016/j.clp.2009.07.015.
  35. Pellicer A, Bravo MC. Near-infrared spectroscopy: A methodology-focused review. Seminars Fetal Neonatal Med. 2011;16:42-9. doi: 10.1016/j.siny.2010.05.003.
  36. Peng S, Boudes E, Tan X, et al. Does near-infrared spectroscopy identify asphyxiated newborns at risk of developing brain injury during hypothermia treatment? Am J Perinatol. 2015;32(6):555-64. doi: 10.1055/s-0034-1396692.
  37. Petrova A, Mehta R. Near-infrared spectroscopy in the detection of regional tissue oxygenation during hypoxic events in preterm infants undergoing critical care. Pediatr Crit Care Med. 2006;7(5):449-54. doi: 10.1097/01.PCC.0000235248.70482.14.
  38. Pichler C, Urlesberger B, Muller W. Impact of bradycardia on cerebral oxygenation and cerebral blood volume during apnoea in preterm infants. Physiol Meas. 2003;24(3):671-80. PMID: 14509305.
  39. Pichler G, Avian A, Binder C, et al. aEEG and NIRS du ring transition and resuscitation after birth: Promi sing additional tools;an observational study. Resuscitation. 2013;84(7):974-8. doi: 10.1016/j.resuscitation.2012.12.025.
  40. Pichler G, Binder C, Avian A, et al. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J Pediatr. 2013;163(6):1558-63. doi: 10.1016/j.jpeds.2013.07.007.
  41. Roll C, Knirf J, Hotsch S, Hanssler L. Effect of surfactant administration on cerebral haemofynamics and oxygenation in premature infants – a near infrared spectroscopy study. Neuropediatrics. 2000;31(1):16-23. doi: 10.1055/s-2000-15292.
  42. Scheeren TW, Schober P, Schwarte LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS):background and current applications. J Clin Monit Comput. 2012;26:279-87. doi: 10.1007/s10877-012-9348-y.
  43. Shah AR, Kurth CD, Gwiazdowski SG, Chance B. Delivoria Papadopoulos M. Fluctuations in cerebral oxygenation and blood volume during endotracheal suctioning premature infants. J Pediatr. 1992;120(5):769-74. PMID: 1578315.
  44. Sood BJ, McLaughlin K, Cortez J. Near-infrared spectroscopy: Applications in neonates. Seminars Fetal Neonatal Med. 2015;20:164-172. doi: 10.1016/j.siny.2015.03.008.
  45. Stoll BJ, Hansen NI, Bell EF., et al. Neonatal outcomes of extremely preterm infants from the NICHD. Neonatal Research Network. Pediatrics. 2010;126(3):443-56. doi: 10.1542/peds.2009-2959.
  46. Tina LG, Frigiola A, Abella R, et al. Near infrared spectroscopy to healthy preterm and term newborns:correlation with gestational age and standard monitoring parameters. Curr Neurovasc Res. 2009;6(3):148-54. PMID: 19534722.
  47. Toet MC, Lemmers PMA, van Schelven LJ, van Bel F. Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics. 2006;117(2):333-39. doi: 10.1542/peds.2005-0987.
  48. Toet MC, Lemmers PMA. Brain monitoring in neonates. Early Hum Dev. 2009;85:77-84. doi: 10.1016/j.earlhumdev.2008.11.007.
  49. Tsuji M, Saul J.P, du Plessis A. Cerebral intravascular oxygenations correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 2000;106:625-32. PMID: 11015501.
  50. Uriesberger B, Kratky E, Rehak T, et al. Regional cerebral oxygen saturation in the brain during birth transition of term infants:comparison between elective cesarean and vaginal deliveries. J Pediatr. 2011;159(3):404-8. doi: 10.1016/j.jpeds.2011.02.030.
  51. Urlesberger B, Grossauyer K, Pocivalnik M, et al. Regional oxygen saturation of the brain and peripheral tissue during birth transition of term infants. J Pediatr. 2010;157(5):740-4. doi: 10.1016/j.jpeds.2010.05.013.
  52. Van Bel F, Lemmers P, Naulaers G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology. 2008;94(4):237-44. doi: 10.1159/000151642.
  53. Van Vonderen II, Roest AA, Siew ML, et al. Measu ring physiological changes during the transition to life after birth. Neonatology. 2014;105:230-42. doi: 10.1159/000356704.
  54. Verhagen EA, Van Braeckel KN, van der Veere CN, et al. Cerebral oxygenation is associated with neurodevelopmental outcome of preterm children at age 2-3 years. Dev Med Child Neurol. 2015;57(5):449-55. doi: 10.1111/dmcn.12622.
  55. Wintermark P, Hansen A, Warfield SK, et al. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neuromage. 2014;1:287-93. doi: 10.1016/j.neuroimage.2013.04.072.
  56. Wolf M, Greisen G. Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate. Clin Perinatol. 2009;36:807-34. doi: 10.1016/j.clp.2009.07.007.
  57. Wyatt JS, Cope M, Delpy DT, et al. Quantization of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl. Physiol. 1990;68:1086-91. PMID: 2341336.
  58. Zaramella P, Freato F, Grazzina N, et al. Does helmet CPAP reduce cerebral blood flow and volume by comparison with infant flow driver CPAP in preterm neonates? Intensive Care Med. 2006;32(10):1613-9. doi: 10.1007/s00134-006-0289-0.
  59. Zhou CL, LiuY F, Zhang JJ, et al. Measurement of brain regional oxygen saturation in neonates in China: a multicenter randomized clinical trial. Zhonghua Er Ke Za Zhi. 2009;47(7):517-22. PMID: 19951514.

Views

Abstract - 346

PDF (Russian) - 257

Cited-By


PlumX


Copyright (c) 2017 Evsyukova I.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies