Application of digital technology in the work of a pathologist: guidelines for learning how to use speech recognition systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Natural language processing is one of the branches of computational linguistics. It is a branch of computer science that includes algorithmic processing of speech and natural language scripts. The algorithms facilitate the development of human-to-machine translation and automatic speech recognition systems (ASRS). ASRS use is twofold: accurately converting operator’s speech into a coherent and meaningful text and using natural language for interaction with a computer. Currently, these systems are widely used in medical practice, including anatomic pathology. Successful ASRS implementation pivots on creation of standardized templated descriptions for organic inclusion in the diagnosis dictation, likewise – on physician training for using such systems in practice. In the past decade, there have been several attempts to standardize surgical pathology reports and create templates undertaken by physicians worldwide. After studying domestic and foreign literature, we created a list of the essential elements that must be included in the template for macro-and microscopic descriptions comprising the final diagnosis. These templates will help in decision-making and accurate diagnosis as they contain all the imperative elements in order of importance. This approach will significantly reduce the need for re-examination of both fixed macroscopic material and the preparation of additional histological sections. The templates built into ASRS reduce the time spent on documentation and significantly reduce the workload for pathologists. For the successful use of ASRS, we have developed an educational course, “Digital Speech Recognition in an Anatomical Pathology Practice”, for postgraduate education of both domestic and foreign doctors. A brief description of the course is presented in this article, and the course itself is available on the Internet.

Full Text

Restricted Access

About the authors

Andrey I. Khramtsov

Ann & Robert H. Lurie Children’s Hospital of Chicago

Author for correspondence.

MD, PhD, Senior Researcher, Department of Pathology and Laboratory Medicine

United States, Chicago

Ruslan A. Nasyrov

Saint Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation


MD, PhD, Dr. Sci. (Med.), Professor, Head, Department of Anatomic Pathology and Forensic Medicine

Russian Federation, Saint Petersburg

Galina F. Khramtsova

The University of Chicago


MD, PhD, Senior Researcher, Department of Medicine, Section of Hematology and Oncology

United States, Chicago


  1. Белоногов Г.Г. Компьютерная лингвистика и перспективные информационные технологии. М.: Русский мир, 2004. [Belonogov GG. Komp’yuternaya lingvistika i perspektivnye informatsionnye tekhnologii. Moscow: Russkiy mir; 2004. (In Russ.)]
  2. Боярский К.К. Введение в компьютерную лингвистику. Учеб. пос. СПб.: НИУ ИТМО, 2013. [Boyarskiy KK. Vvedenie v komp’yuternuyu lingvistiku. Ucheb. pos. Saint Petersburg: NIU ITMO; 2013. (In Russ.)]
  3. Кудрявцев Н.Д., Сергунова К.А., Иванова Г.В., и др. Оценка эффективности внедрения технологии распознавания речи для подготовки протоколов рентгенологических исследований//Врач и информационные технологии. 2020. Т. S1. С. 58–64. [Kudryavtsev ND, Sergunova KA, Ivanova GV, et al. Evolution of the effectiveness of the introduction of speech recognition technology for the preparation of protocols for X-ray examinations. Information Technologies for the Physician. 2020; S1:58-64. (In Russ.)] doi: 10.37690/1811-0193-2020-S1-58-64
  4. Мальков П.Г., Франк Г.А., Пальцев М.А. Стандартные технологические процедуры при проведении патологоанатомических исследований: Клинические рекомендации. М.: Практическая медицина, 2017. [Mal’kov PG, Frank GA, Pal’tsev MA. Standartnye tekhnologicheskie protsedury pri provedenii patologoanatomicheskikh issledovaniy: Klinicheskie rekomendatsii. Moscow: Prakticheskaya meditsina; 2017. (In Russ.)]
  5. Трякин А. А., Гладков О. А., Матвеев В. Б., и др. Практические рекомендации по лечению герминогенных опухолей у мужчин. Злокачественные опухоли: Практические рекомендации//RUSSCO. 2020. T. 10, № 3s2. С. 572–602. [Tryakin AA, Gladkov OA, Matveev VB, et al. Prakticheskie rekomendatsii po lecheniyu germinogennykh opukholey u muzhchin Zlokachestvennye opukholi: Prakticheskie rekomendatsii. RUSSCO. 2020;10(3s2):572-602. (In Russ.)] doi: 10.18027/2224-5057-2020-10-3s2-34
  6. Цитульский А.М., Иванников А.В., Рогов И.С. NLP — Обработка естественных языков//Научно-образовательный журнал для студентов и преподавателей StudNet. 2020. Т. 3. № 6. С. 467–475. [Tsitul’skiy AM, Ivannikov AV, Rogov IS. NLP – Natural language processing. StudNet. 2020;6:467-475. (In Russ.)]
  7. Blackley SV, Schubert VD, Goss FR, et al. Physician use of speech recognition versus typing in clinical documentation: A controlled observational study. Int J Med Inform. 2020;141:104178. doi: 10.1016/j.ijmedinf.2020.104178
  8. Goldsmith JD, Siegal GP, Suster S, et al. Reporting guidelines for clinical laboratory reports in surgical pathology. Arch Pathol Lab Med. 2008;132(10):1608-1616. doi: 10.5858/2008-132-1608-RGFCLR
  9. Henricks WH, Roumina K, Skilton BE, et al. The utility and cost effectiveness of voice recognition technology in surgical pathology. Mod Pathol. 2002;15(5):565-571. doi: 10.1038/modpathol.3880564
  10. Kang HP, Sirintrapun SJ, Nestler RJ, Parwani AV. Experience with voice recognition in surgical pathology at a large academic multi-institutional center. Am J Clin Pathol. 2010;133(1):156-159. doi: 10.1309/AJCPOI5F1LPSLZKP
  11. Renshaw AA, Mena-Allauca M, Gould EW, Sirintrapun SJ. Synoptic Reporting: Evidence-Based Review and Future Directions. JCO Clin Cancer Inform. 2018;2:1-9. doi: 10.1200/CCI.17.00088
  12. Singh M, Pal TR. Voice recognition technology implementation in surgical pathology: advantages and limitations. Arch Pathol Lab Med. 2011;135(11): 1476-1481. doi: 10.5858/arpa.2010-0714-OA
  13. Sluijter CE, van Workum F, Wiggers T, et al. Improvement of Care in Patients with Colorectal Cancer: Influence of the Introduction of Standardized Structured Reporting for Pathology. JCO Clin Cancer Inform. 2019;3:1-12. doi: 10.1200/CCI.18.00104
  14. Valenstein PN. Formatting pathology reports: applying four design principles to improve communication and patient safety. Arch Pathol Lab Med. 2008;132(1): 84-94. doi: 10.5858/2008-132-84-FPRAFD
  15. Veras LV, Arnold M, Avansino JR, et al. Guidelines for synoptic reporting of surgery and pathology in Hirschsprung disease. J Pediatr Surg. 2019;54(10):2017-2023. doi: 10.1016/j.jpedsurg.2019.03.010
  16. Программа Voice2Med. Режим доступа: Дата обращения: 06.09.21. [Program Voice2Med. Available from: (In Russ.)]
  17. Digital Speech Recognition Systems in an Anatomical Pathology Practice. Media Lab. Available from: Accessed: 06.09.2021.
  18. Dragon Medical One. Nuance Communications Inc. Available from: Accessed: 06.09.21.
  19. VoiceOver PRO. Voicebrook Inc. Available from:
  20. The College of American Pathologists (CAP) eCC (electronic Cancer Checklists). Available from:
  21. The Say it for Pathologists. Inc n Voq. Available from: (accessed 07.03.2021).
  22. Fusion Speech for Pathology. Dolbey. Available from: 07.03.2021).

Supplementary files

Supplementary Files
1. Fig. 1. General architecture of digital speech recognition systems

Download (50KB)
2. Fig. 2. An example of work with Dragon Medical One software for dictation of gross description and histological diagnosis

Download (257KB)

Copyright (c) 2021 Khramtsov A.I., Nasyrov R.A., Khramtsova G.F.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies