Blood-brain barrier: peculiarities of structural and functional organization in patients with glioblastoma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The research of the blood-brain barrier began at the turn of the 18th–19th centuries. To date due to the large number of studies conducted, it is obvious that this system has an impossibly complex structure at the organ, tissue and molecular genetic levels. Scientific interest in the changes in the blood-brain barrier that occur during pathological neoplastic processes is increasing. As it turned out, the restructuring of this system is an important and integral stage in the pathogenesis of glioblastoma, a tumor of the central nervous system with the most unfavorable prognosis. Heterogeneous structure with the formation of areas of altered cellular composition, uneven and uncontrolled permeability, provided by a large number of transport vesicles and the destruction of tight contacts between endotheliocytes, active outflow of molecules from the parenchyma due to the continuous synthesis of new portions of ABC-carrier proteins, the creation of an immature vascular network under the influence of high expression of VEGF by tumor cells — the main characteristics of the hematopoietic barrier, formed in glioblastoma and supporting its survival. The further research of the features of the structure and mechanisms of functioning of the blood-brain barrier in glioblastoma is a new and promising task in modern neuro–oncology, the solution of which will not only expand the understanding of the biology of the most common and malignant brain tumor but will also improve the effectiveness of treatment of patients and improve the prognosis.

Full Text

Restricted Access

About the authors

Sofia S. Sklyar

Polenov Russian Neurosurgical Institute — the Branch of Almazov National Medical Research Centre; B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: s.sklyar2017@yandex.ru

MD, PhD, Junior Research Associate, Laboratory of Neurooncology, Polenov Russian Neurosurgical Institute – the Branch of Almazov National Medical Research Centre; Junior Research Associate, Center for Preclinical and Clinical research, St. Petersburg B.P. Konstantinov Institute of Nuclear Physics

Russian Federation, Saint Petersburg; Saint Petersburg

Alexander P. Trashkov

B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”; National Research Center “Kurchatov Institute”

Email: alexander.trashkov@gmail.com

Head, Center of Preclinical and Clinical Research, St. Petersburg B.P. Konstantinov Institute of Nuclear Physics; Head of the Neurocognitive Research Resource Center, National Research Center Kurchatov Institute

Russian Federation, Saint Petersburg; Moscow

Marina V. Matsko

Clinical Scientific-Practical Center of Oncology; Saint Petersburg State University; St. Petersburg Medico-Social Institute

Email: marinamatsko@mail.ru

MD, PhD, Dr. Sci. (Med.), Leading Research Associate, Clinical Scientific-Practical Center of Oncology; Assistant Professor, Department of Oncology, Saint Petersburg State University; Associate Professor, Department of Oncology, St. Petersburg Medico-Social Institute

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Andrey L. Konevega

B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”; National Research Center “Kurchatov Institute”

Email: konevega_al@pnpi.nrcki.ru

MD, PhD, Head, Department of Molecular and Radiation Biophysics, St. Petersburg B.P. Konstantinov Institute of Nuclear Physics; Head of the Department of Biomedical Technologies, National Research Center Kurchatov Institute

Russian Federation, Saint Petersburg; Moscow

Marina Yu. Kopaeva

National Research Center “Kurchatov Institute”

Email: m.kopaeva@mail.ru

Research Associate, Laboratory of Neuroscience National Research Center Kurchatov Institute

Russian Federation, Moscow

Anton B. Cherepov

National Research Center “Kurchatov Institute”

Email: ipmagus@mail.ru

Lead Engineer, Center for Neurocognitive Research

Russian Federation, Moscow

Nikolai V. Tsygan

Kirov Military Medical Academy; B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”

Email: 77th77@gmail.com

MD, PhD, Dr. Sci. (Med.), Associate Professor, Department Neurology, Kirov Military Medical Academy; Leading Research Associate, St. Petersburg B.P. Konstantinov Institute of Nuclear Physics

Russian Federation, Saint Petersburg; Saint Petersburg

Bobir I. Safarov

Polenov Russian Neurosurgical Institute — the Branch of Almazov National Medical Research Centre

Email: safarovbob@mail.ru

MD, PhD, Head, 4th Department

Russian Federation, Saint Petersburg

Nikita E. Voinov

Polenov Russian Neurosurgical Institute — the Branch of Almazov National Medical Research Centre

Email: nik_voin@mail.ru

Neurosurgeon

Russian Federation, Saint Petersburg

Andrei G. Vasiliev

St. Petersburg State Pediatric Medical University

Email: avas7@mail.ru

MD, PhD, Dr. Sci. (Med.), Head, Pathophysiology Department

Russian Federation, Saint Petersburg

References

  1. Berezhanskaya SB, Lukyanova EA, Zhavoronkova TE, et al. The modern concept of blood-brain barrier structural-functional organization and basic mechanisms of its resistance disorder. Pediatrics. Journal named after G.N. Speransky. 2017;96(1):135–141. (In Russ.) doi: 10.24110/0031-403X-2017-96-1-135-141
  2. Gorbacheva LR, Pomytkin IA, Surin AM, et al. Astrocytes and their role in the pathology of the central nervous system. Russian Pediatric Journal. 2018;21(1): 46–53. (In Russ.) doi: 10.18821/1560-9561-2018-21-1-46-53
  3. Kuvacheva NV, Salmina AB, Komleva YuK, et al. Permeability of the hematoencephalic barrier in normalcy, brain development pathology and neurodegeneration. Zhurnal Nevrologii I Psikhiatrii imeni S.S. Korsakova. 2013;113(4):8085. (In Russ.)
  4. Sushkou SA, Lebedeva EI, Myadelets OD. Pericytes as a potential source of neoangiogenesis. Surgery news. 2019;27(2):212–221. (In Russ.) doi: 10.18484/2305-0047.2019.2.212
  5. Cherepanov SA, Baklaushev VP, Gabashvili AN, et al. Hedgehog signaling in the pathogenesis of neuro-oncology diseases. Biomeditsinskaya khimiya. 2015;61(3): 332–342. (In Russ.) doi: 10.18097/PBMC20156103332
  6. Khachatryan VA, Kim AV, Samochernykh KA, et al. Zlokachestvennye opukholi golovnogo mozga, sochetayushchiesya s gidrotsefaliei. Neurosurgery and Neurology of Kazakhstan. 2009. № 4. С. 3–20. (In Russ.)
  7. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2): 193–215. doi: 10.1016/j.devcel.2011.07.001
  8. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41. doi: 10.1038/s41568-019-0205-x
  9. Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells. 2007;25(10): 2524–2533. doi: 10.1634/stemcells.2007-0166
  10. Becher OJ, Hambardzumyan D, Fomchenko EI, et al. Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res. 2008;68(7): 2241–2249. doi: 10.1158/0008-5472.CAN-07-6350
  11. Belykh E, Shaffer KV, Lin C, et al. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: delivering optical labels to brain tumors. Front Oncol. 2020;10:739. doi: 10.3389/fonc.2020.00739
  12. De Bock M, Van Haver V, Vandenbroucke RE, et al. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia. 2016;64(7): 1097–1123. doi: 10.1002/glia.22960
  13. Brown LS, Foster CG, Courtney J-M, et al. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci. 2019;13:282. doi: 10.3389/fncel.2019.00282
  14. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7:a020412. doi: 10.1101/cshperspect.a020412
  15. Gril B, Paranjape AN, Woditschka S, et al. Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases. Nat Commun. 2018;9(1):2705. doi: 10.1038/s41467-018-05030-w
  16. Groothuis DR, Molnar P, Blasberg RG. Regional blood flow and blood-to-tissue transport in five brain tumor models. Implications for chemotherapy. Prog Tumor Res. 1984;27:132–153. doi: 10.1159/000408227
  17. Haseloff RF, Dithmer S, Winkler L, et al. Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects. Semin Cell Dev Biol. 2015;38:16–25. doi: 10.1016/j.semcdb.2014.11.004
  18. Jackson S, El Ali A, Virginito D, Gilberg MR. Blood-brain barrier pericyte importance in malignant gliomas: what we can learn from stroke and Alzheimer’s disease. Neuro Oncol. 2017;19(9):1173–1182. doi: 10.1093/neuonc/nox058
  19. Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol. 2019;4(37):1–29. doi: 10.1126/sciimmunol. aav0492
  20. Mo F, Pellerino A, Soffietti R, Rudà R. Blood-brain barrier in brain tumors: biology and clinical relevance. Int J Mol Sci. 2021;22(23):12654. doi: 10.3390/ijms222312654
  21. Nduom EK, Yang C, Merrill MJ, et al. Characterization of the blood-brain barrier of metastatic and primary malignant neoplasms. J Neurosurg. 2013;119(2): 427–433. doi: 10.3171/2013.3.JNS122226
  22. Da Ros M, De Gregorio V, Iorio AL, et al. Glioblastoma chemoresistance: the double play by microenvironment and blood-brain barrier. Int J Mol Sci. 2018;19(10):2879. doi: 10.3390/ijms19102879
  23. Pandit R, Chen L, Gotz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev. 2020;165–166:1–14. doi: 10.1016/j.addr.2019.11.009
  24. Stern L, Gautier R. Recherches sur le liquidecéphalo-rachidien. I. Les rapports entre le liquidecéphalo-rachidien et la circulation sanguine. Arch Int Physiol. 1921;17(2):138–192. doi: 10.3109/13813452109146211
  25. Wesseling P, van der Laak JA, de Leeuw H, et al. Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. J Neurosurg. 1994;81(6):902–909. doi: 10.3171/jns.1994.81.6.0902
  26. Zhou W, Chen C, Shi Y, et al. Targeting glioma stem cell-derived pericytes disrupts the blood–tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell. 2017;21(5):591–603.e4. doi: 10.1016/j.stem.2017.10.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure and functioning of the blood-brain barrier in physiological conditions. A. Endotheliocytes are connected by tight contacts consisting of proteins claudin-5 and occludin. These compounds have an intracellular domain that regulates the cytoskeleton through ZO1. B. The main transport mechanisms in the endothelium (transcellular, paracellular, by SLC and receptor-mediated endocytosis, and the efflux pathway through ABC proteins are shown. The regulation of the expression of these carriers is controlled by astrocytes and pericytes via the WNT-catenin and SHH signaling pathways. C. Pericytes and astrocytes express Ang1, which is responsible for the formation of tight contacts between endotheliocytes. Pericytes control the expression of adhesive molecules on endotheliocytes (ICAM-1, VCAM-1). D. Fixation of pericytes on the basement membrane is ensured by their expression of PDGFRβ and synthesis by endotheliocytes of PDGFβ

Download (226KB)
3. Fig. 2. The structure and functioning of BTB. A — the destruction of tight junctions (claudin-5 and occluding) leads to increased uncontrolled paracellular diffusion and disruption of the endotheliocyte cytoskeleton. Infiltrative growth of glioblastoma causes displacement and destruction of astrocyte processes. Reactive astrocytes express S1PR-3, which enhances infiltration by T-lymphocytes; B — endotheliocytes are characterized by the loss of many carriers and the presence of a large number of transport vesicles and ABC proteins; C — the distribution of pericytes is uneven with alternating zones of their absence and areas with a layered structure. Differentiating from stem tumor cells, pericytes express a large amount of CD248. The formation of new vessels in glioblastoma occurs through the synthesis of VEGF by tumor cells and endotheliocytes

Download (292KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies