Formation of richterite in the enstatite–diopside system in the presence of the K2CO3–Na2CO3–CO2–H2O fluid in application to the processes of mantle metasomatism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents results of studying the formation reaction of K–Na-richterite in the enstatite + diopside association with the participation of the K2CO3–Na2CO3–CO2–H2O fluid at 3 GPa and 1000°C, simulating the formation of this mineral in peridotites of the upper mantle. Richterite formation depends on the (H2O + CO2) / (K2CO3 + Na2CO3) and K2CO3 / Na2CO3 ratios in the starting material. A high concentration of alkaline components in the fluid leads to the decomposition of clinopyroxene, the formation of olivine, as well as a change in the component composition of pyroxene and amphibole. Fluids with a high concentration of the potassium component are responsible for the formation of K-richterite, similar in composition to that formed in metasomatized peridotites of the upper mantle. In some cases, such a fluid leads to the decomposition of amphibole and stabilization of the alkaline melt. With an increase in the activity of the sodium component, the fluid contains richterite, which is similar in composition to richterite from lamproites. The obtained patterns can be used to assess the activities of fluid components and the conditions for the formation of K-richterite. To replenish the data bank of Raman spectra of minerals, the largest and most homogeneous amphibole crystals of different compositions were studied.

Full Text

Restricted Access

About the authors

E. V. Limanov

D.S. Korzhinskii Institute of Experimental Mineralogy RAS

Author for correspondence.
Email: limanov.ev@iem.ac.ru
Russian Federation, Academician Osipyan st., 4, Chernogolovka, 142432

V. G. Butvina

D.S. Korzhinskii Institute of Experimental Mineralogy RAS

Email: limanov.ev@iem.ac.ru
Russian Federation, Academician Osipyan st., 4, Chernogolovka, 142432

O. G. Safonov

D.S. Korzhinskii Institute of Experimental Mineralogy RAS; Lomonosov Moscow State University

Email: limanov.ev@iem.ac.ru

Faculty of Geology MSU

Russian Federation, Academician Osipyan st., 4, Chernogolovka, 142432; Leninskie Gory, 1, Moscow, 119991

A. V. Spivak

D.S. Korzhinskii Institute of Experimental Mineralogy RAS

Email: limanov.ev@iem.ac.ru
Russian Federation, Academician Osipyan st., 4, Chernogolovka, 142432

K. V. Van

D.S. Korzhinskii Institute of Experimental Mineralogy RAS

Email: limanov.ev@iem.ac.ru
Russian Federation, Academician Osipyan st., 4, Chernogolovka, 142432

S. S. Vorobey

Vernadsky Institute of Geochemistry and Analytical Chemistry RAS

Email: limanov.ev@iem.ac.ru
Russian Federation, Kosygina st., 19, Moscow, 119991

References

  1. Литвин Ю. А. (1991) Физико-химические исследования плавления глубинного вещества Земли. М: Наука, 312 с.
  2. Safonov O. G., Butvina V. G. (2016) Indicator Reactions of K and Na Activities in the Upper Mantle: Natural Mineral Assemblages, Experimental Data, and Thermodynamic Modeling. Geochem. Int. 54(10), 893–908.
  3. Aoki K. (1975) Origin of phlogopite and potassic richterite bearing peridotite xenoliths from South Africa. Contrib. to Mineral. Petrol. 53(3), 145–156.
  4. Apopei A. I., Buzgar N. (2010) The Raman study of amphiboles. Analele Stiintifice de Universitatii, Al. I. Cuza Iasi. Sect. 2. Geologie. 56(1), 57–83.
  5. Conceição R. V., Green, D.H. (2004) Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos. 72(3–4), 209–229.
  6. Connolly J. A.D., Galvez M. E. (2018) Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. EPSL. 501, 90–102.
  7. Della Ventura G., Hawthorne F. C., Mihailova B., Sodo A. (2021) Raman and FTIR Spectroscopy of Synthetic Amphiboles: I. The OH Librational Bands and the Determination of the OH-F Content of Richterites via Raman Spectroscopy. Can. Mineral. 59(1), 31–41.
  8. Downes P. J., Wartho J., Griffin B. J. (2006) Magmatic evolution and ascent history of the Aries micaceous kimberlite, Central Kimberley Basin, Western Australia: evidence from zoned phlogopite phenocrysts, and UV laser 40Ar/39Ar analysis of phlogopite-biotite. J. Petrol. 47(9), 1751–1783.
  9. Dumanska-Słowik M., Powolny T., Natkaniec-Nowak L., Stankiewicz K. (2022) Mineralogical and geochemical implications on the origin of dianite from the alkaline Murun Complex (Eastern Siberia, Russia). Ore Geol. Rev. (141), 1–13.
  10. Erlank A. (1973) Kimberlite potassic richterite and the distribution of potassium in the upper mantle. IKC: Extended Abstracts. (1), 103–106.
  11. Erlank A. J., Waters F. G., Hawkesworth C. J., Haggerty S. E., Allsopp H. L., Rickard R. S., Menzies M. A. (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. Mantle metasomatism, Academic Press. 221–311.
  12. Fitzpayne A., Giuliani A., Hergt J., Phillips D., Janney P. (2018) New geochemical constraints on the origins of MARID and PIC rocks: Implications for mantle metasomatism and mantle-derived potassic magmatism. Lithos. (318–319), 478–493.
  13. Foley S. F., Musselwhite D. S., Van der Laan S. R. (1999) Melt compositions from ultramafic vein assemblages in the lithospheric mantle: A comparison of cratonic and non-cratonic settings. Proceedings of the IKC. 1. Cape Town, Red Roof Design, 238–246.
  14. Foley S. F., Ezad I. S., van der Laan S. R., Pertermann M. (2022) Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts. Geosci. Front. 13.
  15. Fyfe W. S. (1960) Hydrothermal synthesis and determination of equilibrium between minerals in the subliquidus region. J. Geol. 68, 553–566.
  16. Gao M., Xu H., Foley F. S., Zhang J., Wang Y. (2023) Ultrahigh-pressure mantle metasomatism in continental collision zones recorded by post-collisional mafic rocks. GSA Bulletin.
  17. Gervasoni F., Jalowitzki T., Peres Rocha M., Kalikowski Weska R., Novais-Rodrigues E., Antonio de Freitas Rodrigues R., Bussweiler Y., Soares Rocha Barbosa E., Berndt J., Luiz Dantas E., da Silva Souza V., Klemme S. (2022) Recycling process and proto-kimberlite melt metasomatism in the lithosphere-asthenosphere boundary beneath the Amazonian Craton recorded by garnet xenocrysts and mantle xenoliths from the Carolina kimberlite. Geosci. Front. 13(5), 1–17.
  18. Green D. H., Hibberson W. O., Rosenthal A., Kovács I., Yaxley G. M., Falloon T. J., Brink F. (2014) Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J. Petrol. 55(10), 2067–2096.
  19. Hawthorne F. C., Oberti R., Harlow G. E., Maresch W. V., Martin R. F., Schumacher J. C., Welch M. D. (2012) Nomenclature of the amphibole supergroupe. Am. Mineral. 97, 2031–2048.
  20. Huang E. (2003) Raman Spectroscopic Study of Amphiboles. PhD thesis in Chinese.
  21. Jones A. P., Smith J. V., Dawson J. B. (1982) Mantle metasomatism in 14 veined peridotites from Bultfontein Mine, South Africa. J. Geology. 90(4), 435–453.
  22. Kaur G., Mitchell R. H. (2015) Mineralogy of the P-12 K-Ti-richterite diopside olivine lamproite from Wajrakarur, Andhra Pradesh, India: implications for subduction-related magmatism in eastern India. Mineral. Petrol. 110(2–3), 223–245.
  23. Konzett J. (1997) Phase relations and chemistry of Ti-rich K-richterite–bearing mantle assemblages: An experimental study to 8.0 GPa in a Ti-KNCMASH system. Contrib. Mineral. Petrol. 128(4), 385–404.
  24. Konzett J., Fei Y. W. (2000) Transport and storage of potassium in the Earth’s upper mantle and transition zone: An experimental study to 23 GPa in simplified and natural bulk compositions. J. Petrology. 41(4), 583–603.
  25. Konzett J., Sweeney R. J., Thompson A. B., Ulmer P. (1997) Potassium amphibole stability in the upper mantle: an experimental study in a peralkaline KNCMASH system to 8.5 GPa. J. Petrology. 38(5), 537–568.
  26. Konzett J., Ulmer P. (1999) The stability of hydrous potassic phases in lherzolitic mantle – an experimental study to 9.5 GPa in simplified and natural bulk compositions. J. Petrology. 40(4), 629–652.
  27. Konzett J., Wirth R., Hauzenberger Ch., Whitehouse M. (2013) Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: Evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos. 182–183, 165–184.
  28. Luth R. W. (1997) Experimental study of the system phlogopite-diopside from 3–5 to 17 GPa. Am. Min. 82, 1198–1210.
  29. Manning C. E. (2004) The chemistry of subduction-zone fluids. EPSL. 223, 1–16.
  30. Niida K., Green D. H. (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib. Mineral. Petrol. 135(1), 18–40.
  31. O’Reilly S.Y., Griffin W. L. Mantle metasomatism. (2013) In Metasomatism and the chemical transformation of rock (Eds. Harlov D. E., Austerheim H.), Berlin Heidelberg: Springer, 471–533.
  32. Rinaudo C., Belluso E., Gastaldi D. (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral. Mag. 68(3), 443–453.
  33. Rinaudo C., Gastaldi D., Belluso E., Capella S. (2005) Application of Raman Spectroscopy on asbestos fibre identification. Neues Jahrbuch für Mineralogie – Abhandlungen. 182(1), 31–36.
  34. Shurvell H. F., Rintoul L., Fredericks P. M. (2001) Infrared and Raman spectra of jade and jade minerals. Int. J. Vib. Spectrosc. (www.ijvs.com). 5(5), 4.
  35. Sudo A., Tatsumi Y. (1990) Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones. Geophys. Res. Lett. 17(1), 29–32.
  36. Tatsumi Y., Kogiso T., Nohda S. (1995) Formation of a third volcanic chain in Kamchatka: Generation of unusual subduction-related magmas. Contrib. Mineral. Petrol. 120(2), 117–128.
  37. Trønnes R. G. (2002) Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa. Mineral. Petrol. 74(2–4), 129–148.
  38. van Achterbergh E., Griffin W. L., Stiefenhofer J. (2001) Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contrib. Mineral. Petrol. 141(4), 397–414.
  39. Wagner C., Velde D. (1985) Mineralogy of two peralkaline, arfvedsonite-bearing minettes. A new occurrence of Zn-rich chromite. Bulletin de Minéralogie. 108(2), 173–187.
  40. Wagner C., Velde D. (1986) The mineralogy of K-richterite bearing lamproites. Am. Min. 71(1–2), 17–37.
  41. Waters F. G., Erlank A. J., Daniels L. R.M. (1989) Contact relationships between MARID rock and metasomatised peridotite in a kimberlite xenolith. Geochem. J. 23(1), 11–17.
  42. Zimmermann R., Gottschalk M., Heinrich W., Franz G. (1997) Experimental Na-K distribution between amphiboles and aqueous chloride solutions, and a mixing model along the richterite-K-richterite join. Contrib. Mineral. Petrol. 126(3), 252–264.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photographs of samples in reflected electrons: (a) I-10; (b) I-30; (c) II-40; (d) II-30. Legend: Ol – olivine, Cpx – clinopyroxene, Opx – orthopyroxene, Amph – amphibole, L – melt quench products. Black areas are the result of aggregate chipping during polishing. The “spottiness” of amphibole and olivine is due to the presence of inclusions of both pyroxenes. Aggregates of needle-shaped crystals are probably silicate melt quench products.

Download (440KB)
3. Fig. 2. Photographs of samples in reflected electrons: (a) II-50; (b) III-10; (c) III-60; (d) III-50. The zonal distribution of phases in the last sample is associated with the temperature gradient in the cell used in the NL-40 apparatus. Legend: see Fig. 1.

Download (413KB)
4. Fig. 3. Graphs of mineral composition changes depending on fluid composition in system I: (a) Ca f.u. in Cpx (Cpx* is relict clinopyroxene preserved as inclusions in other phases); (b) Ca f.u. in Opx; (c) comparison of synthesized K-richterites with natural analogues: black circles, gray squares, and black triangles are richterites from lamproites (Wagner, Velde, 1986), (Kaur, Mitchell, 2015), and (Downes et al., 2006), respectively, white circles and white squares are K-richterites from metasomatized peridotites (Jones et al., 1982) and (Erlank, 1973), respectively, gray square with a cross is richterite from dianite of the Murun complex; Grey diamonds – K-richterites from MARID (Waters et al., 1989), grey triangles – from PKP peridotites (Waters et al., 1989), light grey field – amphiboles of system I, grey field – system II, dark grey field – system III; (d) comparison of amphiboles with analogues from the work of Zimmerman et al. (1997): black circles – the present study 1000°C, 3 GPa, grey – 800°C, 250 MPa, white – 700°C, 250 MPa. The black dotted line reflects the linear regression for our data, the grey line – for amphiboles at 800°C and 250 MPa (Zimmerman et al., 1997).

Download (245KB)
5. Fig. 4. Comparison of changes in amphibole composition depending on K/Na and (K2CO3 + Na2CO3) / (CO2 + H2O) ratios in the fluid: (a) system I (K/Na = 50 : 50); (b) II (K < Na); (c) III (K > Na). White dots – Ca, gray – K, black – Na.

Download (206KB)
6. Fig. 5. Comparison of the obtained Raman spectra of amphiboles (III-60 and II-40) with synthetic K-richterite (Della Ventura et al., 2021), natural K-richterite (Dumanska-Słowik et al., 2022), and natural richterite (R050414) from the library https://rruff.info.

Download (141KB)

Copyright (c) 2024 Russian Academy of Sciences