Features of crystallization of andesite melt at moderate hydrogen pressures (experimental study)
- Authors: Persikov E.S.1, Bukhtiyarov P.G.1, Shaposhnikova O.Y.1, Aranovich L.Y.2, Nekrasov A.N.1
-
Affiliations:
- Institute of Experimental Mineralogy of the Russian Academy of Sciences
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
- Issue: Vol 69, No 4 (2024)
- Pages: 363-369
- Section: Articles
- URL: https://journals.eco-vector.com/0016-7525/article/view/660506
- DOI: https://doi.org/10.31857/S0016752524040047
- EDN: https://elibrary.ru/KLMGXF
- ID: 660506
Cite item
Full Text
Abstract
Important problems of magma differentiation, formation of native metals and ore formation processes in the earth's crust are increasingly associated with the active participation of hydrogen. In this paper, new experimental data on the crystallization of andesite melts at high temperatures (900–1250°C) and hydrogen pressures (10–100 MPa) have been obtained, which clarify the possible role of hydrogen in the processes occurring in andesite melts in the earthʼs crust and during volcanism under strongly reduced conditions (f(O2) = 10–17–10–18). In crystallization experiments, it was found that the crystal compositions (pyroxenes and plagioclases) formed in experiments on crystallization of andesite melt under hydrogen pressure closely correspond to the crystal compositions of lava flows of Avacha volcano in Kamchatka. This result can be considered as an experimental confirmation of the participation of hydrogen in the volcanic process.
Keywords
About the authors
E. S. Persikov
Institute of Experimental Mineralogy of the Russian Academy of Sciences
Author for correspondence.
Email: persikov@iem.ac.ru
Russian Federation, Academician Osipyan st., Chernogolovka, 4, 142432
P. G. Bukhtiyarov
Institute of Experimental Mineralogy of the Russian Academy of Sciences
Email: pavel@iem.ac.ru
Russian Federation, Academician Osipyan st., Chernogolovka, 4, 142432
O. Y. Shaposhnikova
Institute of Experimental Mineralogy of the Russian Academy of Sciences
Email: zakrev@iem.ac.ru
Russian Federation, Academician Osipyan st., Chernogolovka, 4, 142432
L. Y. Aranovich
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: lyaranov@igem.ru
Russian Federation, Staromonetny lane, 35, Moscow, 119017
A. N. Nekrasov
Institute of Experimental Mineralogy of the Russian Academy of Sciences
Email: alex@iem.ac.ru
Russian Federation, Academician Osipyan st., Chernogolovka, 4, 142432
References
- Аранович Л. Я. (2013) Флюидно-минеральные равновесия и термодинамические свойства смешения флюидных систем. Петрология. 21, 588–599. https://doi.org/10.7868/S0869590313060022
- Иванов Б. В. (2008) Андезиты Камчатки. М.: Наука, 470 с.
- Карпов Г. А., Мохов А. В. (2004) Акцессорные самородные рудные минералы эруптивных пеплов андезитовых вулканов Камчатки. Вулканология и сейсмология. 4, 41–49.
- Левашов В. К., Округин Б. В. (1984) Оценка физических условий образования сегрегаций самородного железа в базальтовом расплаве. Геохимия и минералогия мафитов и ультрамафитов Сибирской платформы. Якутск: ЯФ СО АН СССР, 54–62.
- Олейников Б. В., Округин А. В., Томшин М. Д., Левашов В. К., Варганов А. С., Копылова А. Г., Панков В. Ю. (1985) Самородное металлообразование в платформенных базитах. (Под ред. В. В. Ковальского). Якутск: ЯФ СО АН СССР, 188 с.
- Рябов В. В., Павлов А. Л., Лопатин Г. Г. (1985) Самородное железо в сибирских траппах. Новосибирск: Наука СО РАН, 167 с.
- Barin I. (1995) Thermochernical data of pure substances. Third Edition. VCH Publishers, Inc., New York, USA, 1885 p.
- Bird J. M., Goodrick C. A., Weathers M. S. (1981) Petrogenesis of Uiviaq iron, Disko Island, Greenland. J. Geophys. Res. B. 86(12), 11787–11806.
- Bukhtiyarov P. G., Persikov E. S. (2021). Study of the comparative effect of high pressures H2 and Ar (up to 400 MPa) on the viscosity of albite and andesite melts at temperatures of 1200–1400°C. Experiments in Geosciences. 27(1), 140–143.
- Marakushev A. A. (1995) Nature of native metals formation. Doklady RAS. 341(6), 807–812.
- Mysen B. O. (1991) Relation between structure, redox equlibria of iron and properties of magmatic liquids. In: Physical Chemistry of Magma (eds.: L. L. Perchuk and I. Kushiro). Chapter 2, Springer Verlag, 41–98.
- Persikov E. S., Zharikov V. A., Bukhtiyarov P. G., Pol’skoy S.F. (1990) The effect of volatiles on the properties of magmatic melts. Eur. J. Mineral. 2, 621–642. https://doi.org/10.1127/ejm/2/5/0621
- Persikov E. S. (1998) Viscosity of model and magmatic melts at the pressures and temperatures of the Earth’s crust and upper mantle. Russian Geology and Geophysics. 39(11), 1780–1792.
- Persikov E. S., Bukhtiyarov P. G., Aranovich L. Ya., Nekrasov A. N., Shaposhnikova O. Yu. (2019) Experimental modeling of formation of native metals (Fe, Ni, Co) in the earth’s crust by the interaction of hydrogen with basaltic melts. Geohem. Int. 57(10), 1035–1044. https://doi.org/10.1134/S0016702919100082
- Persikov E. S., Bukhtiyarov P. G. (2020) Viscosity of magmatic melts: Improved structural-chemical model. Chem. Geol. 556(2), 119820. https://doi.org/10.1016/j.chemgeo.2020.119820
- Persikov E. S., Bukhtiyarov P. G., Aranovich L. Ya., Shaposhnikova O. Yu., Nekrasov A. N. (2023) Experimental study of the process of interaction of hydrogen with igneous melts in conditions of the Earth’s crust. Russian Geology and Geophisics, June, 1–13. https://doi.org/10.2113/RGG20234562
- Tomshin M. D., Kopylova A. G., Vasilyeva A. E. (2023) Native Iron in Siberian Traps. Petrology 31(2), 223–236. https://doi.org/10.1134/S0869591123020054
- Woodland A. B., O'Neill, H. St.C. (1997) Thermodynamic data for Fe-bearing phases obtained using noble metal alloys as redox sensors. Geochim. Cosmochim. Acta. 61, 4359–4366. https://doi.org/10.1016/S0016-7037(97)00247-0
Supplementary files
