Study of roméite solubility in the fluid immiscibility region of the NaF–H2O system at 800°C, 200 MPa

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

New data on roméite (CaNa)Sb2O6F solubility in the NaF–H2O system of P–Q type in a wide range of sodium fluoride concentrations (from 0 to 25 wt. % NaF) have been obtained. The concentration of antimony, in equilibrium with roméite and fluorite, in the range of NaF concentrations from 1 to 8 mol kg−1 H2O (25 wt. % NaF), is in the interval of 0.02–0.2 mol kg−1 H2O. According to the data obtained, the concentration of antimony in the L1 and L2 phases in the fluid immiscibility region of the NaF–H2O system at 800°C, 200 MPa and f(O2) = 50 Pa, specified by the Cu2O–CuO buffer, is 0.4 and 2.1 wt. % Sb, respectively. For the first time, during these experiments, the formation of fluorite skeletal forms and an intermetallic compound Pt5Sb of a hexagonal crystal system with lattice parameters (LP): a = b = 4.56(4), c = 4.229(2) Å, α = β = 90°, γ = 120° was established. Pentaplatinum antimonide is formed on the surface of Pt ampoules at 800°C, P = 200 MPa and f(O2) ≤ 10−3.47 Pa (Cu–Cu2O buffer) in experiments on the incongruent dissolution of romeite, which causes a sharp decrease (more than 1000 times) the concentration of antimony in solution.

Full Text

Restricted Access

About the authors

A. F. Redʹkin

Korzhinskii Institute of Experimental Mineralogy RAS (IEM RAS)

Author for correspondence.
Email: redkin@iem.ac.ru
Russian Federation, Acad. Osipyan st., 4, Chernogolovka, Moscow district, 142432

N. P. Kotova

Korzhinskii Institute of Experimental Mineralogy RAS (IEM RAS)

Email: redkin@iem.ac.ru
Russian Federation, Acad. Osipyan st., 4, Chernogolovka, Moscow district, 142432

Yu. B. Shapovalov

Korzhinskii Institute of Experimental Mineralogy RAS (IEM RAS)

Email: redkin@iem.ac.ru
Russian Federation, Acad. Osipyan st., 4, Chernogolovka, Moscow district, 142432

A. N. Nekrasov

Korzhinskii Institute of Experimental Mineralogy RAS (IEM RAS)

Email: redkin@iem.ac.ru
Russian Federation, Acad. Osipyan st., 4, Chernogolovka, Moscow district, 142432

References

  1. Ерёмин О. В., Юргенсон Г. А., Солодухина М. А., Эпова Е. С. (2018) Гипергенные минералы сурьмы и висьмута: методы оценки их стандартных потенциалов Гиббса. В сб.: Минералогитехногенеза-2018. РАН, Уральское отделение. С. 103–131.
  2. Кужугет Р. В. (2014) Золото-теллуридное оруденение Алдан-Маадырского рудного узла (Западная Тува): минералого-геохимические особенности руд и условий их образования. Дис. канд. г.-мин. наук, Кызыл. 152 с.
  3. Редькин А. Ф., Котова Н. П., Шаповалов Ю. Б. (2016) Жидкостная несмесимость в системе NaF–H2O и растворимость микролита при 800°C. ДАН. 469(2), 210–214.
  4. Редькин А. Ф., Котова Н. П., Шаповалов Ю. Б. (2022) Растворимость пирохлора при 800°C и Р = 170–230 МПа. ДАН. 507(1), 42–45. https://doi.org/10.31857/S2686739722601405
  5. Akinfiev N. N., Korzhinskaya V. S., Kotova N. P., Redkin A. F., and Zotov A. V. (2020) Niobium and Tantalum in Hydrothermal Fluids: Thermodynamic description of Hydroxide and Hydroxofluoride Complexes. Geochim. Cosmochim. Acta. 280(), 102–115. https://doi.org/10.1016/j.gca.2020.04.009
  6. Amador J., Gutierrez-Puebla E., Monge M. A., Rasines I., Ruiz-Valero C. (1988) Diantimony tetraoxides revisited. Inorg. Chem. 27(), 1367–1370. https://doi.org/10.1021/ic00281a011
  7. Atencio D., Ciriotti M. E., and Andrade M. B. (2013) Fluorcalcioroméite, (Ca, Na)2Sb25+(O, OH)6F, a new roméite-group mineral from Starlera mine, Ferrera, Grischun, Switzerland: description and crystal structure. Mineral. Mag. 77(4), 467–473. https://doi.org/10.1180/minmag.2013.077.4.06
  8. Bahfenne S., Frost R. L. (2010) Raman spectroscopic study of the antimonite mineral romeite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 75(2), 637–639. https://doi.org/10.1016/j.saa.2009.11.031
  9. Baes C. F. Jr., Mesmer R. E. (1976) The Hydrolysis of Cations. John Wiley–Interscience: New York, NY, P. 370–375. 489 P. ISBN: 0471039853, 9780471039853
  10. Brugger J., Gieré R., Graeser S., and Melsser N. (1997) The crystal chemistry of roméite. Contrib. Mineral. Petrol. 127(1–2), 136–146. https://doi.org/10.1007/s004100050271
  11. Cody C. A., DiCarlo L., and Darlington R. K. (1979) Vibrational and thermal study of 1007 antimony oxides. Inorg. Chem. 18(6), 1572–1576. https://doi.org/10.1021/ic50196a036
  12. Diemar G. A., Filella M., Leverett P., and Williams P. A. (2009) Dispersion of antimony from oxidizing ore deposits. Pure Appl. Chem. 81(9), 1547–1553. https://doi.org/10.1351/pac-con-08-10-21
  13. Durussel P., Feschotte P. (1991) Les systèmes binaires Pd–Sb et Pt–Sb. J. Alloys Compd. 176(1), 173–181. https://doi.org/10.1016/0925-8388(91)90023-O
  14. Filella M., May P. M. (2003) Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters. Geochim. Cosmochim. Acta. 67(21), 4013–4031. https://doi.org/10.1016/S0016-7037(03)00095-4
  15. Gayer K. H., Garrett A. B. (1952) The equilibria of antimonous oxide (rhombic) in dilute solutions of hydrochloric acid and sodium hydroxide at 25°C. J. Am. Chem. Soc. 74(9), 2353–2354. https://doi.org/10.1021/ja01129a051
  16. Hashimoto H., Nishimura T., and Umetsu Y. (2003) Hydrolysis of antimony(III)-hydrochloric acid solution at 25°C. Mater. Trans. 44(8), 1624–1629. https://doi.org/10.2320/matertrans.44.1624
  17. Herath I., Vithanage M., and Bundschuh J. (2017) Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ. Pollut. 223(), 545–559. https://doi.org/10.1016/j.envpol.2017.01.057
  18. Kim W.-S., Chao G. Y. (1990) Phase relations in the system Pt–Sb–Te. Can. Mineral. 28(), 675–685.
  19. Kim W.-S. (1993) Phases and phase equilibria of the Pt–Sb system. Korean J. Cryst. 4(1), 18–24.
  20. Liu J., Zhang Y., and Guo C. (2013) Thermodynamic assessment of the Pt-Sb system. Int. J. Nonferrous Metallurgy. 2(), 95–99. https://doi.org/10.4236/ijnm.2013.23013
  21. Redkin A. F., Kotova N. P., and Shapovalov Y. B. (2015) Liquid immiscibility in the system NaF–H2O at 800°C and 200–230 Pа and its effect on the microlite solubility. J. Solution Chem. 44(10), 2008–2026. https://doi.org/10.1007/s10953-015-0394-1
  22. Redkin A. F., Kotova N. P., Shapovalov Yu.B., and Velichkin V. I. (2018) Experimental study and thermodynamic modeling of niobium, tantalum, and uranium behaviour in supercritical fluoride hydrothermal solutions. In: Solution Chemistry Advances in Research and Applications: (Ed.: Yongliang Xiong). Published by Nova Science Publishers, Inc. New York. P. 1–46. ISBN: 978-1-53613-101-7
  23. Redkin A. F., Kotova N. P., and Shapovalov Yu.B. (2016) Liquid immiscibility in the system NaF–H2O and microlite solubility at 800°C. Dokl. Earth Sci. 469(1), 722–727. https://doi.org/10.1134/S1028334X16070151
  24. Robie R. A., Hemingway B. S., Fisher J. R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv Bull 1452, 456 p.
  25. Timofeev A., Migdisov A. A., and Williams-Jones A.E. (2015) An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochim. Cosmochim. Acta. 158(), 103–111. https://doi.org/10.1016/j.gca.2015.02.015
  26. Tourky A. R., Mousa, A.A. (1948) Studies of some metal electrodes. Part V. The amphoteric properties of antimony tri- and pent-oxide. J. Chem. Soc. 759–763. https://doi.org/10.1039/JR9480000759
  27. Itkin V. P., Alcock C. B. (1996) The Pt–Sb (platinum–antimony) system. J. Phase Equilib. 17(), 356–361. https://doi.org/10.1007/BF02665564
  28. Zotov A. V., Shikina N. D., and Akinfiev N. N. (2003) Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions. Geochim. Cosmochim. Acta. 67(10), 1821–1836. https://doi.org/10.1016/S0016-7037(00)01281-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. XRD of solid phases after experiments on the solubility of Rom in NaF solutions from 0 to 25 wt.% at 800°C, 200 MPa and fO2 specified by Cu2O-CuO buffer. Legend: R — Rom, F — Flu.

Download (152KB)
3. Fig. 2. Effect of NaF concentration on the relative intensity of the <111> Flu and <311> Rom lines in the products of experiments on the solubility of a mixture of 15 mg Rom + 2 mg Flu at 800°C, 200 MPa and fO2, specified by Cu2O–CuO buffer.

Download (77KB)
4. Fig. 3. SEM images of solid phases after experiments at 800°C, 200 MPa, in solutions of NaF 0 (a), 4.03 (b), 10 (c), 15 (d), 20 (d), 25 wt. % (e) and fO2 specified by Cu2O–CuO buffer.

Download (708KB)
5. Fig. 4. SEM images of solid phases after experiments at 800°C, 200 MPa, in solutions of NaF 4.03 (a) and 10 wt.% (b) and fO2 specified by Cu–Cu2O buffer.

Download (259KB)
6. Fig. 5. XRD patterns of solid phases after solubility experiments for Rom in 4.03 and 10 wt.% NaF solutions at 800°C, 200 MPa and fO2 specified by Cu–Cu2O buffer. Legend: Sb4 – experiment in 4.03 wt.% NaF; Sb10 – in 10 wt.% NaF; F – Flu.

Download (107KB)
7. Fig. 6. Surface of Pt ampoule after experiment at 800°C, 200 MPa, in solution of 4.03 wt.% and fO2 specified by Cu–Cu2O buffer.

Download (289KB)
8. Fig. 7. Dependence of CtotalSb on CtotalNaF in experiments on incongruent solubility of Rom at 800°C, 200 MPa. Based on the results of ICP-MS analysis in the laboratories of (1) – IPTM RAS; (2) – Geological Faculty of Moscow State University.

Download (86KB)

Copyright (c) 2024 Russian Academy of Sciences