Biophysical processes in radiofrequency catheter ablation of cardiac arrhythmias


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modern technologies of endovascular treatment of cardiac arrhythmias allow the doctor with a thin catheter to inflict local damage on any anatomical structure of the heart without any damage to cardiac function. The purpose of such a local effect - ablation - is to interrupt the propagation of the pulse in the endocardium. Understanding the basic principles and biophysical processes during ablation can improve the results and safety of this procedure. The article discusses the principles of thermal effects on endocardial tissue during radiofrequency catheter ablation of cardiac arrhythmias.

Full Text

Restricted Access

About the authors

V. I Steklov

PKU "Central military clinical hospital named after P. V. Mandryka" MO RF

Email: vsteklov@yandex.ru
Moscow

A. A Sergoventsev

PKU "Central military clinical hospital named after P. V. Mandryka" MO RF

Moscow

V. M Emel’yanenko

RUSSIAN national research medical University named after N. I. Pirogov, Ministry of health of the Russian Federation

Moscow

F. G Rzaev

City clinical hospital named after I. V. Davydovsky DZ of Moscow

Moscow

M. V Emel’yanenko

PKU "Central military clinical hospital named after P. V. Mandryka" MO RF

Moscow

Yu. A Vladimirov

Lomonosov Moscow state University

Moscow

References

  1. Максимов Д.Б., Дурманов С.С., Козлов С.С. и др. Анализ осложнений радиочастотных катетерных аблаций // Вестник аритмологии. - 2012. - № 69. - С. 11-15.
  2. Calkins H., Prystowsky E., Carlson M. et al. Temperature monitoring during radiofrequency catheter ablation procedures using closed loop control // Circulation. - 1994. - Vol. 90. - P. 1279-1286.
  3. Cooper J.M., Sapp J.L., Tedrow U. et al. Ablation with an internally irrigated radiofrequency catheter: Learning how to avoid steam pops // Heart Rhythm. - 2004. - N 3. - P. 329-333.
  4. Cobb F.R., Blumenshein S.D., Sealy W.C. et al. Successful surgical interruption of the bundle of Kent in a patient with Wolf-Parkinson-White syndrome // Circulation. - 1968. - Vol. 38 (6). - P. 1018-1029.
  5. Demazumder D., Mirotznik M.S., Schwartzman D. Biophysics of radiofrequency ablation using an irrigated electrode // J. Interv. Cardiac. Electrophysiology. - 2001. - N 5. - P. 377-389.
  6. Demolin J.M., Eick O.J., Munch K. et al. Soft thrombus formation in radiofrequency catheter ablation? // Pacing and Clin. Electrophysiology. - 2002. - Vol. 25. - P. 1219-1222.
  7. Feld G.K. Special Report. Radiofrequency catheter ablation of Type 1 atrial flutter using a large-tip electrode catheter and high-power radiofrequency energy generator // Expert Review of Medical Devices. - 2004. - N 1. - P. 187-192.
  8. Haines D.E. The biophysics of radiofrequency catheter ablation in the heart: The importance of temperature monitoring // Pacing and Clin. Electrophysiology. - 1993. - Vol. 16. - P. 586-591.
  9. Haines D.E., Verrow A.F. Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium // Circulation - 1990. - Vol. 82. - P. 1034-1038.
  10. Kongsgaard E., Steen T., Jensen O. et al. Temperature guided radiofrequency catheter ablation of myocardium: Comparison of catheter tip and tissue temperatures in vitro // Pacing and Clin. Electrophysiology. - 1997. - Vol. 20. - P. 1252-1260.
  11. Kuck K.H., Reddy V.Y., Schmidt B. et al. A novel radiofrequency ablation catheter using contact force sensing: Toccata study // Heart Rhythm. - 2012. - N 9. - P. 18-23.
  12. Langberg J.J., Harvey M., Calkins H. et al. Titration of power output during radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia // Pacing and Clin. Electrophysiology. - 1993. - Vol. 16. - P. 465-470.
  13. Matsudaira K., Nakagawa H., Wittkampf F.H. et al. High incidence of thrombus formation without impedance rise during radiofrequency ablation using temperature control // Pacing and Clin. Electrophysiology. - 2003. - Vol. 26. - P. 1227- 1237.
  14. McRury I.D., Whayne J.G., Haines D.E. Temperature measurement as a determinant of tissue heating during radiofrequency catheter ablation: An examination of electrode thermistor positioning for measurement accuracy // J. Cardiovasc. Electrophysiology. - 1995. - N 6. - P. 268-278.
  15. Nakagawa H., Yamanashi W.S., Pitha J.V. et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation // Circulation. - 1995. - Vol. 91. - P. 2264-2273.
  16. Nakagawa H., Wittkampf F.H., Yamanashi W.S. et al. Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling // Circulation. - 1998. - Vol. 98. - P. 458-465.
  17. Nath S., DiMarco J.P., Gallop R.G. et al. Effects of dispersive electrode position and surface area on electrical parameters and temperature during radiofrequency catheter ablation // Am. J. Cardiol. - 1996. - Vol. 77. - P. 765-767.
  18. Nath S., DiMarco J.P., Haines D.E. Basic aspects of radiofrequency catheter ablation // J. Cardiovasc. Electrophysiology. - 1994. - N 5. - P. 863-876.
  19. Panescu D., Whayne J.G., Fleischman S.D. et al. Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation // IEEE Transactions on Biomedical Engineering. - 1995. - Vol. 42 (9). - P. 879-890.
  20. Petersen H.H., Chen X., Pietersen A. et al. Temperature-controlled irrigated tip radiofrequency catheter ablation: Comparison of in vivo and in vitro lesion dimensions for standard catheter and irrigated tip catheter with minimal infusion rate // J. Cardiovasc. Electrophysiology. - 1998. - N 9. - P. 409-414.
  21. Shah D.C., Namdar M. Real-time contact force measurement: a key parameter for controlling lesion creation with radiofrequency energy // Circ. Arrhythm. Electrophysiology. - 2015. - Vol. 8 (3). - P. 713-721.
  22. Simmers T.A., Wittkampf F.H. et al. In vivo ventricular lesion growth in radiofrequency catheter ablation // Pacing and Clin. Electrophysiology. - 1994. - Vol. 17. - P. 523-531.
  23. Skrumeda L.L., Mehra R. Comparison of standard and irrigated radiofrequency ablation in the canine ventricle // J. Cardiovasc. Electrophysiology. - 1998. - N 9. - P. 1196-1205.
  24. Schumacher B., Eick O., Wittkampf F.H. et al. Temperature response following non-thraumatic low power radiofrequency application // Pacing and Clin. Electrophysiology. - 1999. - Vol. 22. - P. 339-343.
  25. Spector P., Reynolds M.R., Calkins H. et al. Meta-analysis of ablation of atrial flutter and supraventricular tachycardia // Am. J. Cardiol. - 2009. - Vol. 104 (5). - P. 671.
  26. Wittkampf F.H., Hauer R.N., Robles de Medina E.O. Control of radiofrequency lesion size by power regulation // Circulation. - 1989. - Vol. 80. - P. 962-968.
  27. Wittkampf F.H., Nakagawa H.R. Catheter Ablation: Lessons on Lesions // Pacing and Clin. Electrophysiology. - 2006. - Vol. 29. - P. 1285-1297.
  28. Wittkampf F.H., Nakagawa H., Yamanashi W. et al. Thermal latency in radiofrequency ablation // Circulation. - 1996. - Vol. 93. - P. 1083-1086.
  29. Wittkampf F.H., Simmers T.A., Hauer R.N. et al. Myocardial temperature response during radiofrequency catheter ablation // Pacing and Clin. Electrophysiology. - 1995. - Vol. 18. - P. 307- 317.
  30. Wittkampf F.H., Van Oosterhout M.F., Loh P. et al. Where to draw the mitral isthmus linein catheter ablation of atrial fibrillation: Histological analysis // Eur. Heart J. - 2005. - Vol. 26. - P. 689-695.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Steklov V.I., Sergoventsev A.A., Emel’yanenko V.M., Rzaev F.G., Emel’yanenko M.V., Vladimirov Y.A.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 01975 от 30.12.1992.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies