Structure of Bottom Flows in Abyssal Channels of the Atlantic: Comparison of Autonomous and Vessel Observations in the Vema Channel, Romanche Fracture Zone, and Kane Gap

Cover Page

Cite item

Full Text

Abstract

Oceanographic data from measurements in deep-water channels of the Atlantic Ocean were analyzed. Data from two different methods were compared: CTD/LADCP measurements from research vessels and data from autonomous mooring stations. The comparison showed that discrepancies between the data obtained by two different methods can significantly exceed the instrumental accuracy of the instruments. This result highlights the importance of correct selection of mooring station locations in conditions of significant spatial gradients in measured characteristics. The results of the analysis showed that throughout the Antarctic waters pathway, the measurement differences are of the same orders of magnitude. Therefore, the conclusions can be valid for all abyssal channels with intense AABW flows.

About the authors

O. S. Mekhova

Shirshov Institute of Oceanology, Russian Academy of Sciences; St. Petersburg State University

Author for correspondence.
Email: osmeh@yandex.ru
Russia, Moscow; Russia, Saint Petersburg

D. A. Smirnova

Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow State University

Email: osmeh@yandex.ru
Russia, Moscow; Russia, Moscow

D. I. Frey

Shirshov Institute of Oceanology, Russian Academy of Sciences; Marine Hydrophysical Institute, Russian Academy of Sciences

Email: osmeh@yandex.ru
Russia, Moscow; Russia, Sevastopol

References

  1. Демидов А.Н., Добролюбов С.А., Морозов Е.Г., Тараканов Р.Ю. Перенос придонных вод через разлом Вима Срединно-Атлантического хребта // Доклады РАН. 2007. Т. 416. № 3. С. 395–399.
  2. Капустина М.В., Кречик В.А. Распространение Антарктической донной воды в глубоководном проходе Дискавери (Северо-Восточная Атлантика) по данным натурных измерений 2019 г. // Океанология. 2021. Т. 61. № 5. С. 690–701. https://doi.org/10.31857/S0030157421050051
  3. Морозов Е.Г., Демидова Т.А., Лаппо С.С. и др. Распространение Антарктической донной воды через проход Вима // ДАН. 2003. Т. 390. № 3. С. 402–405.
  4. Морозов Е.Г., Демидов А.Н., Тараканов Р.Ю. Перенос Антарктических вод в глубоководных каналах Атлантики // Доклады РАН. 2008. Т. 422. № 6. С. 815–818.
  5. Морозов Е.Г., Тараканов Р.Ю. Вытекание Антарктической донной воды из канала Вима в Бразильскую котловину // Доклады РАН. 2014. Т. 456. № 2. С. 227–230. https://doi.org/10.7868/S0869565214140217
  6. Морозов Е.Г., Тараканов Р.Ю., Демидов А.Н. Перенос придонных вод в проходе Кейн // Доклады Академии наук. 2010. Т. 433. № 4. С. 544–548.
  7. Морозов Е.Г., Фрей Д.И., Нейман В.Г. и др. Экстремальные скорости переноса Антарктической донной воды в глубоководном канале Вима // Доклады Академии наук. 2019. Т. 486. № 4. С. 485–488. https://doi.org/10.31857/S0869-56524864485-488
  8. Тараканов Р.Ю., Морозов Е.Г. Поток Антарктической донной воды на выходе из канала Вима // Океанология. 2015. Т. 55. №. 2. С. 173–181. https://doi.org/10.7868/S0030157415010165
  9. Borisov D., Frey D., Levchenko O. Sediment waves on the Santa Catarina plateau (western South Atlantic) // J. S. Am. Earth Sci. 2020. V. 102, 102698. https://doi.org/10.1016/j.jsames.2020.102698
  10. Campos E.J.D., van Caspel M.C., Zenk W. et al. Warming trend in Antarctic Bottom Water in the Vema Channel in the South Atlantic // Geophysical Research Letters. 2021. V. 48. № 19, e2021GL094709. https://doi.org/10.1029/2021GL094709
  11. Frey D., Borisov D., Fomin V. et al. Modeling of bottom currents for estimating their erosional-depositional potential in the Southwest Atlantic // Journal of Marine Systems. 2022. 230(1), 103736. https://doi.org/10.1016/j.jmarsys.2022.103736
  12. Frey D.I., Fomin V.V., Diansky N.A. et al. New model and field data on estimates of Antarctic Bottom Water flow through the deep Vema Channel // Doklady Earth Sciences. 2017. 474(1). P. 561–564. https://doi.org/10.1134/S1028334X17050026
  13. Frey D.I., Fomin V.V., Tarakanov R.Y. et al. Bottom water flows in the Vema channel and over the Santos plateau based on the field and numerical experiments // In: Velarde M.G., Tarakanov R.Y., Marchenko A.V. (Eds.). The Ocean in Motion: Circulation, Waves, Polar Oceanography. Springer International Publishing, Cham, 2018. P. 475–485. https://doi.org/10.1007/978-3-319-71934-4_29
  14. Frey D.I., Morozov E.G., Fomin V.V. et al. Regional modeling of Antarctic Bottom Water flows in the key passages of the Atlantic // Journal of Geophysical Research: Oceans. 2019. V. 124. https://doi.org/10.1029/2019JC015315
  15. GEBCO Compilation Group. 2021. GEBCO 2021 Grid. https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f
  16. van Haren H., Goustiaux L., Morozov E., Tarakanov R. Extremely long Kelvin Helmholtz billow trains in the Romanche fracture zone // Geophysical Research Letters. 2014. V. 41. № 23. P. 8445–8451. https://doi.org/10.1002/2014GL062421
  17. Hogg N., Siedler G., Zenk W. Circulation and variability at the southern boundary of the Brazil Basin // Journal of Physical Oceanography. 1999. V. 29. P. 145–157. https://doi.org/10.1175/1520-0485(1999)029<0145: CAVATS>2.0.CO;2
  18. Johnson G.C., Cadot C., Lyman J.M. et al. Antarctic Bottom Water warming in the Brazil Basin: 1990s through 2020, from WOCE to Deep Argo // Geophysical Research Letters. 2020. V. 47, e2020GL089191. https://doi.org/10.1029/2020GL089191
  19. Jungclaus J., Vanicek M. Frictionally modified flow in a deep ocean channel: Application to the Vema Channel // Journal of Geophysical Research. 1999. V. 104(C9). P. 21,123–21,136. https://doi.org/10.1029/1998jc900055
  20. Klein B., Molinari R.L., Muller T.J., Seidler G. A transatlantic section at 14.5° N: Meridional volume and heat fluxes // Journal of Marine Research. 1995. V. 53. P. 929–957. https://doi.org/10.1357/0022240953212963
  21. Mantyla A.W., Reid J.L. Abyssal characteristics of the World Ocean waters // Deep-Sea Research. 1983. V. 30(8). P. 805–833. https://doi.org/10.1016/0198-0149(83)90002-X
  22. Mercier H., Speer K.G. Transport of bottom water in the Romanche Fracture Zone and the Chain Fracture Zone // Journal of Physical Oceanography. 1998. V. 28(5). P. 779–790. https://doi.org/10.1175/1520-0485(1998)028%3c0779: TOBWIT%3e2.0.CO;2
  23. Morozov E.G., Tarakanov R.Y., Frey D.I. Bottom Gravity Currents and Overflows in Deep Channels of the Atlantic. Observations, Analysis, and Modeling. Springer Nature: Berlin/Heidelberg, Germany, 2021. 483 p. https://doi.org/10.1007/978-3-030-83074-8
  24. Morozov E.G., Tarakanov R.Y., Frey D.I. et al. Bottom water flows in the tropical fractures of the northern Mid-Atlantic Ridge // Journal of Oceanography. 2018. V. 74(2). P. 147–167. https://doi.org/10.1007/s10872-017-0445-x
  25. Morozov E.G., Tarakanov R.Y., van Haren H. Transport of Antarctic Bottom Water through the Kane Gap, tropical NE Atlantic Ocean // Ocean Sci. 2013. V. 9. P. 825–835. https://doi.org/10.5194/os-9-825-2013
  26. Morozov E.G., Zuev O.A., Frey D.I., Krechik V.A. Antarctic Bottom Water jets flowing from the Vema Channel // Water (MDPI). 2022. V. 14(21), 3438. https://doi.org/10.3390/w14213438
  27. Orsi A.H., Johnson G.C., Bullister J.L. Circulation, mixing, and production of antarctic bottom water // Prog. Oceanogr. 1999. V. 43. V. 55–109. https://doi.org/10.1016/ S0079-6611(99)00004-X
  28. Rhein M., Stramma L., Krahmann G. The spreading of Antarctic Bottom Water in the tropical Atlantic // Deep Sea Research Part I. 1998. V. 45. P. 507–527. https://doi.org/10.1016/s0967-0637(97)00030-7
  29. Speer K.G., Zenk W. The flow of Antarctic Bottom Water into the Brazil Basin // Journal of Physical Oceanography. 1993. V. 23. P. 2667–2682. https://doi.org/10.1175/1520-0485(1993)023<2667: TFOABW>2.0.CO;2
  30. Tarakanov R.Y., Morozov E.G, van Haren H. et al. Structure of the deep spillway in the western part of the Romanche Fracture Zone // Journal of Geophysical Research: Oceans. 2018. V. 123. № 11. P. 8508–8531. https://doi.org/10.1029/2018JC013961
  31. Wadley M., Bigg G. Abyssal channel flow in ocean circulation models with application to the Vema Channel // Journal of Physical Oceanography. 1995. V. 26. P. 38–48. https://doi.org/10.1175/1520-0485(1996)026<0038: acfiog>2.0.co;2
  32. Wüst G. Schichtung und Zirkulation des Atlantischen Ozeans (ed. Defant A.) Wissenschaftliche Ergebnisse, Deutsche Atlantische Expedition auf dem Forschungs – und Vermessungsschiff “Meteor” 1925–1927 // Berlin. 1936. Walter de Gruyter & Co. 6(1).
  33. Zenk W. Temperature fluctuations and current shear in Antarctic Bottom Water at the Vema Sill // Progress in Oceanography. 2008. V. 77. № 4. P. 276–284. https://doi.org/10.1016/j.pocean.2006.05.006
  34. Zenk W., Morozov E.G. Decadal warming of the coldest Antarctic Bottom Water flow through the Vema Channel // Geophysical Research Letters. 2007. V. 34. L14607. https://doi.org/10.1029/2007GL030340
  35. Zenk W., Visbeck M. Structure and evolution of the abyssal jet in the Vema Channel of the South Atlantic // Deep Sea Research Part II: Topical Studies in Oceanography. 2013. V. 85. P. 244–260. https://doi.org/10.1016/j.dsr2.2012.07.033

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (98KB)
4.

Download (838KB)
5.

Download (185KB)
6.

Download (540KB)
7.

Download (884KB)

Copyright (c) 2023 О.С. Мехова, Д.А. Смирнова, Д.И. Фрей