On the relation of fine layering of a stratified water environment with vertical turbulent mass transfer

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The results of a laboratory experiment performed to test the fundamental mechanism of fine layering of a stratified fluid during turbulent impact are described and analyzed. A series of experimental runs were carried out with stirring of an aquatic environment with an initially linear vertical salinity gradient using oscillating vertical rods, creating a uniform turbulent impact throughout the entire thickness of the water column. At the same time, in each run regular measurements of electrical conductivity (salinity) profiles were fulfilled and calculations of the vertical salt flux (mass) were carried out. It turned out that in case of a sufficiently large density (salinity) gradient the mass flux is a decreasing function of the density gradient, and this is the main condition for the formation of a fine layering, according to the proposed mechanism. The experimental results confirmed its feasibility. The dependence of the vertical scale of the fine structure on the parameters of stratification and turbulent impact has also been established.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Gerasimov

Shirsov Institute of Oceanology Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: gerasimov.vv@ocean.ru
Ресей, Moscow

A. Zatsepin

Shirsov Institute of Oceanology Russian Academy of Sciences

Email: zatsepin@ocean.ru
Ресей, Moscow

Әдебиет тізімі

  1. Баренблатт Г.И. Динамика турбулентных пятен и интрузии в устойчиво-стратифицированной жидкости // Изв. АН СССР, ФАО. 1978. Т. 14. № 2. С. 195–206.
  2. Журбас В.М., Озмидов Р.В. (ред.). Формы тонкой термохалинной структуры океана. Каталог // Материалы океанологических исследований. Выпуск 1. М.: Межведомственный геофизический комитет при Президиуме Академии Наук СССР, 1987. 134 с.
  3. Зацепин А.Г. О коллапсе стратифицированных пятен // ДАН СССР. 1982. Т. 265. № 2. С. 460–463.
  4. Зацепин А.Г., Федоров К.Н., Воропаев С.И., Павлов А.М. Экспериментальное исследование растекания перемешанного пятна в стратифицированной жидкости // Изв. АН СССР. ФАО. 1978. Т. 14. № 2. С. 234–237.
  5. Озмидов Р.В. О турбулентном обмене в устойчиво стратифицированном океане // Изв. АН СССР. Физика атм. и океана. 1965. № 8. С. 853–859.
  6. Тернер Дж. Эффекты плавучести в жидкости. М.: Мир, 1977. 430 с.
  7. Федоров К.Н. Тонкая термохалинная структура вод океана. Л.: Гидрометеоиздат, 1976. 184 с.
  8. Федоров К.Н. Физическая природа и структура океанических фронтов. Л.: Гидрометеоиздат, 1983. 296 с.
  9. Balmforth N.J., Llewellyn Smith S.G., Young W.R. Dynamics of interfaces and layers in a stratified turbulent fluid // J. Fluid Mech. 1997. V. 355. P. 329–358.
  10. Barenblatt G.I., Bertsch M., Dal Passo R. et al. A mathematical model of turbulent heat and mass transfer in stably stratified shear flow // J. Fluid Mech. 1993. V. 253. P. 341–358.
  11. Dmitrenko I., Golovin P., Dehn J. et al. Influence of sea ice on under-ice mixing under stratified conditions: potential impacts on particle distribution // Estuarine, Coastal and Shelf Science. 1998. V. 46. № 4. P. 523–529.
  12. Park Y.-G., Whitehead J.A., Gnanadesikan A. Turbulent mixing in stratified fluids: layer formation and energetics // J. Fluid Mech. 1994. V. 279. P. 279–311.
  13. Pelegri J.L., Sangra P. A mechanism for layer formation in stratified geophysical flows // Journal of Geophysical Research. 1998. V. 103. № С13. P. 30, 679–30, 693.
  14. Phillips O.M. Turbulence in a strongly stratified fluid: Is it unstable? // Deep Sea Res. Oceanogr. Abstr. 1972. V. 19. P. 7–81.
  15. Posmentier E.S. The generation of salinity fine structure by vertical diffusion // J. Phys. Oceanogr. 1977. V. 7. P. 298–300.
  16. Radko T. Double Diffusive Convection. Cambridge University Press. 2013. 344 p. ISBN 978-05-218-8074-9.
  17. Ruddick B.R., McDougall T.J., Turner J.S. The formation of layers in a uniformly stirred density gradient // Deep-Sea Res. 1989. V. 36. P. 597–609.
  18. Thorpe S.A. Experiments on the instability of stratified shear flow: miscible fluids // J. Fluid Mech. 1971. V. 46. № 2. P. 299–319.
  19. Zatsepin A.G., Gerasimov V.V., Ostrovskii A.G. Laboratory study of turbulent mass exchange in a stratified fluid // J. Mar. Sci. Eng. 2022. V. 10. P. 756–774. https://doi.org/10.3390/jmse10060756

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup. 1 – organic glass pool with internal dimensions of 36 × 13.5 × 25 cm3; 2 – system of grids with vertical rods; 3 – rod on which the grids with rods are fixed; 4 – electric motor with an eccentric providing horizontal oscillation of the rod; 5 – aquatic environment linearly stratified by salinity; 6 – electrical conductivity microsensor for measuring the salinity profile; 7 – Expert 002 electrical conductivity sensor in the upper quasi-homogeneous layer; 8 – vertical elevator with an electric motor for moving the conductivity microsensor; PC – personal computer for collecting the measured data; S1 – salinity of the upper layer, ρ(z) = β d S/dz – vertical density gradient, β – salinity compression coefficient. The circle in the center of the tank corresponds to the outlines of the plane-parallel beam of light created by the shadow device.

Жүктеу (131KB)
3. Fig. 2. Two-tank system for filling with linearly stratified liquid. 1 – right tank with initial solution of water with zero salinity S10 = 0, 2 – left tank with water with salinity S20, 3 – electric motor, 4 – mixer, 5 – tap with tube connecting tanks, 6 – tap with tube connecting right tank with pool.

Жүктеу (59KB)
4. Fig. 3. Shadow photographs (a–d) of the successive formation and disappearance of a step structure during turbulent mixing of a liquid initially linearly stratified by salinity. The corresponding salinity profiles obtained using a microelectrode conductivity sensor are shown next to the photographs. Bright bands are layers with a large density/salinity gradient separating layers with quasi-homogeneous density/salinity. Experiment at Ri0 = 13, Re = 115.

Жүктеу (520KB)
5. Fig. 4. Stepped salinity profile. The principle of identifying the thickness of the upper mixed layer, determining its thickness H1 and the thicknesses of other quasi-homogeneous layers.

Жүктеу (214KB)
6. Fig. 5. Dependence of the logarithm of the mass flux modulus Q on the logarithm of the density gradient Gρ. Experiment with initial values ​​Ri0 = 13, Re = 115. Zones highlighted in different shades of gray correspond to different numbers of high-gradient layers: 3, 2, and 1.

Жүктеу (465KB)
7. Fig. 6. Dependence of the density gradient on time (n is the serial number of the period of vertical passage of the point conductivity sensor) in the successively formed high-gradient layers L1, L2, L3 and the average density gradient L0 between the near-surface and bottom quasi-homogeneous layers.

Жүктеу (72KB)
8. Fig. 7. Experiment with mixing of stratified liquid without formation of steps at Ri0 = 5, Re = 115. Photo (a) – start of mixing, (b) – after 30 minutes, (c) – after 90 minutes, (d) – after 140 minutes.

Жүктеу (1MB)
9. Fig. 8. Dependence of the logarithm of the mass flux modulus Q on the logarithm of the density gradient . Experiment at Ri0 = 5, Re = 96.

Жүктеу (177KB)
10. Fig. 9. Dependence of the thickness H of the intermediate quasi-homogeneous layers on the ratio of the mixing speed U to the Väisälä–Brünt frequency N in this work (points circled by squares) together with the results of similar experiments performed earlier. The straight line is a linear regression.

Жүктеу (187KB)

© Russian Academy of Sciences, 2024