The Fruit Fly for Searching for Genes and Mechanisms that Control Cytoskeleton Structure
- Authors: Simonova O.B1
-
Affiliations:
- Koltsov Institute of Developmental Biology, RAS
- Issue: No 7 (2022)
- Pages: 40-46
- Section: Articles
- URL: https://journals.eco-vector.com/0032-874X/article/view/631038
- DOI: https://doi.org/10.7868/S0032874X22070079
- ID: 631038
Cite item
Abstract
Studies of regulatory factors and biochemical properties of the actin cytoskeleton are being successfully carried out in vitro on models or using cell cultures. However, the function of such factors in vivo, when they participate in development of incredible variety of cytoskeleton structure of the organism, remains not clear. To fully understand forms and functions of cytoskeleton structures, it is necessary, firstly, to compose a complete list of factors that regulate the assembly of structures, secondly, to determine the spatiotemporal mechanism which coordinates the activity of these factors, and thirdly, to specify the influence of these regulator factors and subordinated structures on the dynamics of development. This review considers innovative techniques that have made the fruit fly a powerful tool in the study of these issues.
Keywords
About the authors
O. B Simonova
Koltsov Institute of Developmental Biology, RAS
Email: osimonova@hotmail.com
Moscow, Russia
References
- Tilney L.G., DeRosier D.J. How to make a curved Drosophila bristle using straight actin bundles. PNAS USA. 2005; 102(52): 18785–18792. doi: 10.1073/pnas.0509437102.
- Hudson A.M., Cooley L. Understanding the function of actin-binding proteins through genetic analysis of Drosophila oogenesis. Annu. Rev. Genet. 2002; 36: 455–488. doi: 10.1146/annurev.genet.36.052802.114101.
- Montell D.J., Yoon W.H., Starz-Gaiano M. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat. Rev. Mol. Cell Biol. 2012; 13(10): 631–645. doi: 10.1038/nrm3433.
- Kim J.H., Cho A., Yin H. et al. Psidin, a conserved protein that regulates protrusion dynamics and cell migration. Genes Dev. 2011; 25: 730–741. doi: 10.1101/gad.2028611.
- Vorontsova Y.E., Zavoloka E.L., Cherezov R.O. et al. Drosophila as a model system used for searching the genes, signaling pathways, and mechanisms controlling cytoskeleton formation. Russ. J. Dev. Biol. 2019; 50: 1–8. doi: 10.1155/2018/7359267.
- Fabian L., Brill J.A. Drosophila spermiogenesis: Big things come from little packages. Spermatogenesis. 2012; 2(3): 197–212. doi: 10.4161/spmg.21798.
- Desai R., Sarpal R., Ishiyama N. et al. Monomeric alpha-catenin links cadherin to the actin cytoskeleton. Nat. Cell Biol. 2013; 15(3): 261–273. doi: 10.1038/ncb2685.
- Mohr S.E., Perrimon N. RNAi screening: new approaches, understandings, and organisms. Wiley Interdiscip. Rev. RNA. 2012; 3(2): 145–158. doi: 10.1002/wrna.110.
- Zhang J., Fonovic M., Suyama K. et al. Rab35 controls actin bundling by recruiting fascin as an effector protein. Science. 2009; 325(5945): 1250–1254. doi: 10.1126/science.1174921.
- Lee T., Luo L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 2001; 24(5): 251–254. doi: 10.1016/s0166-2236(00)01791-4.
- Nefedova, L.N. Drosophila melanogaster as a model of developmental genetics: modern approaches and prospects. Russ. J. Dev. Biol. 2020; 51: 201–211. doi: 10.1134/S1062360420040050.
Supplementary files
