Effect of under-ice light intensity and convective mixing on chlorophyll a distribution in a small mesotrophic lake

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Data of long-term measurements of under-ice solar radiation, water temperature, and chlorophyll a are analyzed in four phytoplankton groups (green, diatoms, blue-green, and cryptophyte algae) in a small mesotrophic Vendyurskoe Lake (Karelia) in the period of spring under-ice convection. It is shown that, after thawing away of snow cover from lake surface, under-ice illumination increases, water temperature rises, the depth of convectively mixed layer (CML) increases, and microalga photosynthesis intensifies. In the daytime, chlorophyll a extremums appear in the CML, and, unlike the homogeneous characteristics (water electric conductivity, mineralization, etc.), the cells of different phytoplankton species can be used as tracers in studying convective mixing. A prognostic equation is obtained, reflecting an inverse dependence of the coefficients of variation of chlorophyll a concentration in CML on solar radiation fluxes, penetrating under ice bottom surface. A direct relationship was shown to exist between the increase in chlorophyll concentration in CML and its thickness.

Full Text

Restricted Access

About the authors

N. I. Palshin

Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: npalshin@mail.ru
Russian Federation, Petrozavodsk

G. E. Zdorovennova

Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: npalshin@mail.ru
Russian Federation, Petrozavodsk

R. E. Zdorovennov

Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: npalshin@mail.ru
Russian Federation, Petrozavodsk

T. V. Efremova

Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: npalshin@mail.ru
Russian Federation, Petrozavodsk

G. G. Gavrilenko

Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: npalshin@mail.ru
Russian Federation, Petrozavodsk

A. Yu. Terzhevik

Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: npalshin@mail.ru
Russian Federation, Petrozavodsk

References

  1. Ефремова Т.В., Пальшин Н.И., Здоровеннова Г.Э., Тержевик А.Ю. Влияние экстремально жаркого лета 2010 года на температуру воды и распределение кислорода в озерах Карелии // Метеорология и гидрология. 2015. № 9. С. 67–76.
  2. Крейман К.Д., Голосов С.Д., Сковородова Е.П. Влияние турбулентного перемешивания на фитопланктон // Вод. ресурсы. 1992. Т. 19. № 3. С. 92–97.
  3. Миронов Д.В., Тержевик А.Ю. Весенняя конвекция в пресноводных озерах, покрытых льдом // Изв. АН. Физика атмосферы и океана. 2000. Т. 36. № 5. С. 681–688.
  4. Озера Карелии. Справочник / Под ред. Филатова Н.Н., Кухарева В.И. Петрозаводск: КарНЦ РАН, 2013. 463 с.
  5. Петров М.П., Тержевик А.Ю., Пальшин Н.И., Здоровеннов Р.Э., Здоровеннова Г.Э. Поглощение солнечной радиации снежно-ледовым покровом озер // Вод. ресурсы. 2005. Т. 32. № 5. С. 546–554.
  6. Тержевик А.Ю., Пальшин Н.И., Голосов С.Д., Здоровеннов Р.Э., Здоровеннова Г.Э., Митрохов А.В., Потахин М.С., Шипунова Е.А., Зверев И.С. Гидрофизические аспекты формирования кислородного режима мелководного озера, покрытого льдом // Вод. ресурсы. 2010. Т. 37. № 5. С. 568–579.
  7. Трифонова И.С. Экология и сукцессия озерного фитопланктона. Л.: Наука, 1990. 184 с.
  8. Bertilsson S., Burgin A., Carey C.C. et al. The under-ice microbiome of seasonally frozen lakes // Limnol. Oceanogr. 2013. V. 58. № 6. P. 1998–2012.
  9. Gibson C.H., Thomas W.H. Effects of turbulence intermittency on growth inhibition of a red tide dinofiagellate, Gonyaulax polyedra Stein // J. Geophys. Res. 1995. V. 100(C12). P. 24841–24846.
  10. Jewson D.H., Granin N.G., Zhdanov A.A., Gnatovsky R. Yu. Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal // Aquat. Ecol. 2009. V. 43. № 3. P. 673–679.
  11. Kelley D.E. Convection in ice-covered lakes: effects on algal suspension // J. Plank. Res. 1997. V. 19. P. 1859–1880.
  12. Kiili M., Pulkkanen M., Salonen K. Distribution and development of under-ice phytoplankton in 90-m deep water column of Lake Päijänne (Finland) during spring convection // Aquatic Ecol. 2009. V. 43. № 3. P. 707–713.
  13. Maeda O., Ichimura S. On the high density of a phytoplankton population found in a lake under ice // Int. Rev. Ges. Hydrobiol. 1973. V. 58. P. 473–485.
  14. Matthews P.C., Heaney S.I. Solar heating and its influence on mixing in ice-covered lakes // Freshwater Biol. 1987. V. 18. P. 135–149.
  15. Mironov D., Terzhevik A., Kirillin G., Jonas T., Malm J., Farmer D. Radiatively-driven convection in ice-covered lakes: observations, scaling and a mixed-layer model // J. Geophys. Res. 2002. 107. № C4. 7-1-7-16.
  16. Reynolds C.S. The Ecology of Phytoplankton. New York: Cambridge Univ. Press, 2006. 535 p.
  17. Schnoor J.L., Di Toro D.M. Differential phytoplankton sinking- and growth-rates: an eigenvalue analysis // Ecol. modelling. 1980. V. 9. P. 233–245.
  18. Terzhevik A., Golosov S., Palshin N., Mitrokhov A., Zdorovennov R., Zdorovennova G., Kirillin G., Shipunova E., Zverev I. Some features of the thermal and dissolved oxygen structure in boreal, shallow ice-covered Lake Vendyurskoe, Russia // Aquatic Ecol. 2009. V. 43. № 3. P. 617–627.
  19. Thomas W.H., Gibson C.H. Effects of small-scale turbulence on microalgae // J. Appl. Phycol. 1990. V. 2. P. 71–77.
  20. Thomas W.H., Gibson C.H. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein // Deep Sea Res. 1990. Pt A. V. 37(10). P. 1583–1593.
  21. Vehmaa A., Salonen K. Development of phytoplankton in Lake Pääjärvi (Finland) during under-ice convective mixing period // Aquatic Ecol. 2009. V. 43. № 3. P. 693–705.
  22. Zdorovennov R., Palshin N., Zdorovennova G., Efremova T., Terzhevik A. Interannual variability of ice and snow cover of a small shallow lake // Est. J. Earth Sci. 2013. V. 62. № 1. P. 26–32.
  23. Zdorovennova G., Zdorovennov R., Palshin N., Terzhevik A. Optical properties of the ice cover on Vendyurskoe lake, Russian Karelia (1995–2012) // Annals of Glaciol. 2013. V. 54. № 62. P. 121–124.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bathymetry of the lake. Vendure and the position of the weather station (1), multi-hour stations (2) and sections (3).

Download (337KB)
3. Figure 2. Vertical distributions of water temperature (1), solar radiation (% of the value on the surface of the snow-ice cover) (2) and the total concentration of chlorophyll “a” in the under-ice layer (3), in the CRP (4) and the lower stratified layer (5) at different stages of spring subglacial heating: (a) - April 15, 2012, (b) - April 28, 2009

Download (165KB)
4. Fig. 3. Distribution of chlorophyll concentrations “a” on March 27–31, 2014 (a) near the northern shore and April 12–16, 2015 (b) in the central part of the lake.

Download (394KB)
5. Fig. 4. Dependence of average concentrations of total chlorophyll “a” on the depth (a) and temperature of the CPS (b), solar radiation flux on the lower ice boundary (c) and the dependence of the integral amount of chlorophyll “a” under one square meter in the KPS from its depth (g): April 1–28, 2009, April 2–18, April 3–18, 2011, April 4–15–17, 5 - April 18–21, 2012, April 6–22–24, April 7–21–24, 2013 March 8–27–31, April 9–11–16

Download (203KB)
6. Fig. 5. Mean values and standard deviations of chlorophyll concentrations “a” according to the results of spatial surveys during the springtime ice-warming period: (a) - in CPS, (b) - in the lower stratified layer. 1 - total chlorophyll, 2 - green, 3 - diatomaceous, 4 - blue-green, 5 - cryptophytic.

Download (139KB)
7. Fig. 6. (a) - distribution scheme of algae with positive buoyancy (1), heavy cells (2) and organisms fully captured by mixing with almost neutral buoyancy: | wc | << | ww | (3); 4 — CPS boundaries; 5 — lower boundary of the photic zone hp. The process of photosynthesis is shown by paired icons. Communication graphs of chlorophyll concentrations “a” in KPS on April 28, 2009 between: (b) diatoms and greens, (c) diatoms and blue-green algae.

Download (355KB)

Copyright (c) 2019 Russian academy of sciences