EFFECTS OF A ZINC-CONTAINING BIOCOMPOSITE ON THE PARIETAL MICROFLORA OF THE COLON


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The development of intestinal dysbiosis is one of the components in the pathogenesis of inflammatory bowel diseases. A zinc-containing biocomposite (L15) has been designed, which is a hydrophobic rectal ointment. Its composition contains a zinc-containing metal complex dihydroquercetin derivative that has antimicrobial and prebiotic properties. Objective: to assess the qualitative and quantitative changes in the composition of the parietal microflora of the animal colon after rectal administration of the zinc-containing biocomposite in the presence of induced ulcerative colitis. Material and methods. The study was conducted on 54 male Wistar rats divided into 2 groups. Ulcerative colitis was induced by the original procedure. The animals underwent general clinical observation and determination of the quantitative and qualitative composition of the parietal microflora of the distal colon. Results. The rectal administration of a zinc-containing biocomposite to the animals with simulated ulcerative colitis after 10 days led to maintenance of a high level of the representatives of obligate bacteria, such as Bifidobacterium spp. and Lactobacillus spp., which was 47.6% each in progressive disorders with the development of dysbiosis in the parietal microflora of the colon in the control group. Conclusion. In all experimental periods, the changes in the qualitative and quantitative composition of the parietal microflora of the colon in the experimental animals treated with the test zinc-containing biocomposite for a simulated ulcerative lesion of the colon mucosa were positive compensatory as a significant increase in the concentration of Bifidobacterium spp. at 10 days of the experiment and proceeded without the opportunistic microflora.

Full Text

Restricted Access

About the authors

Andrey D. Kim

Irkutsk Research Center of Surgery and Traumatology

Email: kimad1983@rambler.ru
junior Researcher, Scientific Department of Clinical Surgery 1, Bortsov Revolutsii St., Irkutsk 664003, Russian Federation

Svetlana A. Lepekhova

Irkutsk Research Center, Siberian Branch, Russian Academy of Sciences

Email: lepekhova_sa@mail.ru
doctor of Biological Sciences, Chief Researcher of the DMBRT 134, Lermontov St., Irkutsk 664033, Russian Federation

Elena V. Koval

Irkutsk Research Center of Surgery and Traumatology; Irkutsk State Medical Academy of Postgraduate Education

Email: kimad1983@rambler.ru
junior Researcher, Laboratory of Functional Genomics and Interspecific Interaction of Microorganisms, Scientific Department of Clinical Surgery 1, Bortsov Revolutsii St., Irkutsk 664003, Russian Federation; 100, Yubileinyi Microdistrict, Irkutsk 664079, Russian Federation

Yana A. Kostiro

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: yanakos@irioch.irk.ru
candidate of Pharmaceutical Sciences, Major researcher of the pharmaceutical development group 1. Favorsky St., Irkutsk 664033, Russian Federation

Natalia N. Trofimova

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: yanakos@irioch.irk.ru
candidate of chemistry Sciences,Chief specialist,Irkutsk Institute of Chemistry 1. Favorsky St., Irkutsk 664033, Russian Federation

Konstantin A. Apartsin

Irkutsk Research Center of Surgery and Traumatology

Email: dr.apartsin@yahoo.com
professor, Director of the Irkutsk Scientific Center 1, Bortsov Revolutsii St., Irkutsk 664003, Russian Federation

Elena Y. Chashkova

Irkutsk Research Center, Siberian Branch, Russian Academy of Sciences; Irkutsk Research Center of Surgery and Traumatology

Email: elenachash1027@yandex.ru
candidate of Medical Sciences, Head of the Scientific Department of Clinical Surgery 134, Lermontov St., Irkutsk 664033, Russian Federation; 1, Bortsov Revolutsii St., Irkutsk 664003, Russian Federation

Yuri I. Pivovarov

Irkutsk Research Center of Surgery and Traumatology

Email: kimad1983@rambler.ru
professor, Leading Research Associate of the Laboratory of Cell Pathophysiology and Biochemistry of the Scientific Laboratory Department 1, Bortsov Revolutsii St., Irkutsk 664003, Russian Federation

References

  1. Yi-Zhen Zhang, Yong-Yu Li. Inflammatory bowel disease: Pathogenesis, World J. Gastroenterol, 2014 January 7; 20 (1): 91-9. https://doi.org/10.3748/wjg.v20.i1.91
  2. Gerasimidis K., Bertz M., Hanske L. et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition. Inflamm. Bowel. Dis. 2014; 20 (5): 861-71. https://doi.org/10.1097/MIB.0000000000000023
  3. Arribas B., Suárez-Pereira E., Ortiz Mellet C. et al. Di-Dfructose dianhydride-enriched caramels: effect on colon microbiota, inflammation, and tissue damage in trinitrobenzenesulfonic acid-induced colitic rats. J. Agric. Food Chem., 2010; 58 (10): 6476-84. https://doi.org/10.1021/jf100513j
  4. Nishimura T., Andoh A., Hashimoto T. et al. Cellobiose prevents the development of dextran sulfate odium (DSS)induced experimental colitis. J. Clin.Biochem.Nutr., 2010; 46 (2): 105-10. https://doi.org/10.3164/jcbn.09-72
  5. Benjamin J.L., Hedin C.R., Koutsoumpas A. et al. Randomised, doubleblind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut. 2011; 60 (7): 923-9. https://doi.org/10.1136/gut.2010.232025
  6. Роговский B.C., Розенфельд M.A., Разумовский С.Д. и др. Оценка способности дигидрокверцетина ингибировать окисление фибриногена озоном. Экспериментальная и клиническая фармакология, 2013; 76 (3): 23-6. https://doi.org/10.30906/08692092-2013-76-3-23-26
  7. Фомичёв ЮЛ., Пучков Ю.Н., Шайдуллина Р.Г. и др. Биополимер древесины дигидрокверцетин - перспективная биологически активная кормовая добавка для телят и поросят. Практик, 2005; 11-2: 52-5
  8. Трофимова Н.Н., Бабкин В.А., Столповская Е.В. Способ получения моно- и билигандных комплексных соединений ионов двухвалентных металлов - цинка, меди (II) и кальция, с дигидрокверцетином, обладающих усиленной антиоксидантной активностью. Патент РФ 2553428. Бюллетень № 16, 10.06.2015: 14
  9. Костыро Я.А., Даваа В.В., Гоголь Е.С. и др. Фармацевтическая композиция для производства мазей, обладающая противовоспалительной и ранозаживляющей активностями, стимулирующая рост волосяных фолликулов на основе воска коры лиственницы сибирской и Гмелина. Патент РФ 2582984. Опубликовано 06.04.2016
  10. Колхир В.К., Тюкавкина Н.А., Багинская А.И., Минеева М.Ф. К оценке фармакологических свойств арабиногалактана. III Российский Национальный Конгресс «Человек и лекарство». Тезисы докладов. М., 1996; 27
  11. Шульц Э.Э., Петрова Т.Н., Комарова Н.И. и др. Способ получения резвератрола из растительного сырья. Патент РФ 22944919. Химия растительного сырья, 2008; 4: 83-88
  12. Atmaca S., Gül K., Çiçek R. The Effect of Zinc on Microbial Growth. Tr. J. of Medical Sciences, 1998; 28: 595-7
  13. ОСТ 91500.11.0004-2003. Протокол ведения больных. Дисбактериоз кишечника. Приказ МЗ РФ № 231 от 09.06.2003

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies