The chemical and toxicological properties of nonsteroidal anti-inflammatory drugs and methods for their determination


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are a group of widely used analgesic, antipyretic, and anti-inflammatory agents in the world, with most of them sold over the counter. In this connection, there is a danger of poisoning from a drug overdose or systematic intake, which can proceed without obvious symptoms. Severe poisonings are characterized by metabolic acidosis, convulsions, coma, acute renal failure, etc. The facts of using the drugs in this group for non-medical purposes make up special cases. NSAIDs vary in chemical structure and therefore differ from each other in the strength and characteristics of action, the frequency and manifestations of side effects. The modification or introduction of new functional groups into medications leads to a decrease or increase in side effects: a positive relationship has been established between lipophilic, brominated compounds and cytotoxicity, while fluorination of the compounds in this group reduces the risk of undesirable effects. To minimize the systemic effect, various dosage forms (cream, gel, and foam for the skin) are brought to the pharmaceutical market. The paper describes modern techniques to identify and quantify the drugs of this group in various biological objects during chemical and toxicological analysis and discusses the possibility of using current methods to establish the fact of using NSAIDs, including those for non-medical purposes. Determination of biomarkers using proteomic technology for the early diagnosis of pathological changes in the systematic administration of NSAIDs is a promising diagnostic area. The structural foundations of the drugs and their classification are presented.

Full Text

Restricted Access

About the authors

Victor Andreevich Kutyakov

V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Territorial Forensic Medical Bureau

Email: victor-koutjakov@yandex.ru
Associate Professor of the Department of biological chemistry with courses of medical, pharmaceutical and toxicological chemistry

Ekaterina Viktorovna Kharitonova

V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: ekaterinav1201@gmail.com
Senior Lecturer of the Department of biological chemistry with courses of medical, pharmaceutical and toxicological chemistry

Lyudmila Vasilievna Trufanova

V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: trufanovalv@mail.ru
Professor of the Department of biological chemistry with courses of medical, pharmaceutical and toxicological chemistry

Viktoria Yulianovna Endrzheevskaya-Shurygina

V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: 9135145077@mail.ru
Associate Professor of the Department of biological chemistry with courses of medical, pharmaceutical and toxicological chemistry

Svetlana Ivanovna Pashchenko

V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: psi51@mail.ru
Assistant of the Department of biological chemistry with courses of medical, pharmaceutical and toxicological chemistry

References

  1. Thomas K., Moody T.W., Jensen R.T. et al. Design, synthesis and biological evaluation of hybrid nitroxide-based non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem. 2018; 31 (147): 34-47. doi: 10.1016/j.ejmech.2018.01.077
  2. Meade E.A., Smith W.L., DeWitt D.L. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 1993; 268: 6610-4.
  3. Ahuja M., Dhake A.S., Sharma S.K., Majumdar D.K. Topical ocular delivery of NSAIDs. AAPS J. 2008; 10 (2): 229-41. doi: 10.1208/s12248-008-9024-9
  4. Sinko W., Lindert S., McCammon J.A. Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem. Biol. Drug Des. 2013; 81 (1): 41-9. doi: 10.1111/cbdd.12051.
  5. Madhava G., Ramana K.V., Sudhana S.M. et al. Aryl/heteroaryl Substituted Celecoxib Derivatives as COX-2 Inhibitors: Synthesis, Anti-inflammatory Activity and Molecular Docking Studies. Med. Chem. 2017; 13 (5): 484-97. doi: 10.2174/157340 6413666170221093740
  6. Manikandan A., Ravichandran S., Sathiyanarayanan K.I., Sivakumar A. Efficacy of phenyl quinoline phenol derivatives as COX-2 inhibitors; an approach to emergent the small molecules as the anti-inflammatory and analgesic therapeutics. Inflammopharmacology. 2017; 25 (6): 621-31. DOI: 10.1007/ s10787-017-0342-3
  7. Pang Y.Y., Yeo W.K., Loh K.Y. et al. Structure-toxicity relationship and structure-activity relationship study of 2-phenylami-nophenylacetic acid derived compounds. Food Chem. Toxicol. 2014; 71: 207-16. doi: 10.1016/j.fct.2014.06.013
  8. Souma S., Sekimoto M., Degawa M. Species difference in the induction of hepatic CYP1A subfamily enzymes, especially CYP1A2, by 2-methoxy-4-nitroaniline among rats, mice, and guinea pigs. Arch. Toxicol. 2006; 80 (11): 739-47.
  9. Barkin R.L. Topical Nonsteroidal Anti-Inflammatory Drugs: The Importance of Drug, Delivery, and Therapeutic Outcome. Am. J. Ther. 2015; 22 (5): 388-407. DOI: 10.1097/ MJT.0b013e3182459abd
  10. McCarberg B.H., Cryer B. Evolving therapeutic strategies to improve nonsteroidal anti-inflammatory drug safety. Am. J. Ther. 2015; 22 (6): 167-78. doi: 10.1097/MJT.0000000000000123
  11. Brandolini L., d'Angelo M., Antonosante A. et al. Differential protein modulation by ketoprofen and ibuprofen underlines different cellular response by gastric epithelium. J. Cell. Physiol. 2018; 233 (3): 2304-12. doi: 10.1002/jcp.26102
  12. Yassen A., Passier P., Furuichi Y., Dahan A. Translational PK-PD modeling in pain. J. Pharmacokinet. Pharmacodyn. 2013; 40 (3): 401-18. doi: 10.1007/s10928-012-9282-0
  13. Yang H., Feng Y., Xu X.S. Pharmacokinetic and pharmacodynamic modeling for acute and chronic pain drug assessment. Expert. Opin. Drug. Metab. Toxicol. 2014; 10 (2): 229-48. doi: 10.1517/17425255.2014.864636
  14. Dhondt L., Devreese M., Croubels S. et al. Comparative population pharmacokinetics and absolute oral bioavailability of COX-2 selective inhibitors celecoxib, mavacoxib and meloxicam in cockatiels (Nymphicus hollandicus). Sci. Rep. 2017; 7 (1): 12043. doi: 10.1038/s41598-017-12159-z
  15. Ma L., Mao X., Sun X., Xu L. Biotransformation of NSAIDs by pig liver microsomes invitro: Kinetics, metabolites identification and toxicity prediction. Chemosphere. 2017; 186: 466-74. doi: 10.1016/j.chemosphere.2017.08.026
  16. Blazaki S., Tsika C., Tzatzarakis M. et al. Pharmacokinetics and efficacy of intraocular flurbiprofen. Graefes. Arch. Clin. Exp. Ophthalmol. 2017; 255 (12): 2375-80. doi: 10.1007/s00417-017-3812-9
  17. Дворская О.Н., Катаев С.С., Силина Т.А., Крохин И.П. Оценка концентрации некоторых нестероидных противовоспалительных средств в процедуре скрининга лекарственных и наркотических веществ в крови. Судебномедицинская экспертиза. 2016; 3: 24-30. [Dvorskaya O.N., Kataev S.S., Silina T. A., Krokhin I.P. Estimation of the concentration of some nonsteroidal anti-inflammatory drugs in the screening procedure for drugs and drugs in the blood. Sudebno-meditsinskaya ekspertiza. 2016; 3: 24-30 (in Russian)].
  18. Nagamatsu K., Kudo K., Usumoto Y. et al. Rapid screening of 18 nonsteroidal anti-inflammatory drugs (NSAIDs) using novel NAGINATA™ gas chromatography-mass spectrometry software. Forensic Toxicol. 2012; 30 (1): 11-8.
  19. Lee X-P., Kumazawa T., Hasegawa C. et al. Determination of nonsteroidal anti-inflammatory drugs in human plasma by LC-MS-MS with a hydrophilic polymer column. Forensic Toxicol. 2010; 28: 96-104.
  20. Arghavani-Beydokhti S., Rajabi M., Asghari A. Coupling of two centrifugeless ultrasound-assisted dispersive solid/liquid phase microextractions as a highly selective, clean, and efficient method for determination of ultra-trace amounts of non-steroidal anti-inflammatory drugs in complicated matrices. Anal. Chim. Acta. 2018; 997: 67-79. DOI: 10.1016/j. aca.2017.10.005
  21. Bellei E., Monari E., Cuoghi A. et al. Discovery by a prot-eomic approach of possible early biomarkers of drug-induced nephrotoxicity in medication-overuse headache. J. Headache. Pain. 2013; 14: 6-16. doi: 10.1186/1129-2377-14-6
  22. Van Swelm R.P., Kramers C., Masereeuw R., Russel F.G. Application of urine proteomics for biomarker discovery in drug-induced liver injury. Crit. Rev. Toxicol. 2014; 44 (10): 823-84. doi: 10.3109/10408444.2014.931341
  23. Wang X., Shojaie A., Zhang Y. et al. PLoS ONE. 2017; 12 (5): e0178444. doi: 10.1371/journal.pone.0178444
  24. Nahm F.S., Park Z.Y., Nahm S.S. et al. Proteomic identification of altered cerebral proteins in the complex regional pain syndrome animal model. Bio. Med. Res. Int. 2014; 2014: 498410. doi: 10.1155/2014/498410
  25. Bellei E., Cuoghi A., Monari E. et al. Proteomic analysis of urine in medication-overuse headache patients: possible relation with renal damages. J. Headache Pain. 2012; 13: 45-52. doi: 10.1007/s10194-011-0390-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies