The amino acid composition of knotweeds (Polygonum) of the series Amphibiae Kom


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The genus Polygonum (Persicaria Mill.) that belongs to the buckwheat family (Polygonaceae Juss.) is represented by a wide variety of species and types - from xerophytes to hydrophytes. The plant is widespread throughout Russia. Polygonum amphibium is a perennial herbaceous plant of the genus Polygonum. There are two known types: aquatic (P. amphibia (L.) Gray) and terrestrial (P. amphibia var. terrestris Delarbre) plants. According to the scientific literature, the aqueous plant has an antimicrobial effect and contains large amounts of phenolic compounds. There is insufficient information on the chemical composition of the terrestrial plant and the characteristics of its use in medicine. The composition of plant amino acids has not been investigated. Objective: to comparatively investigate the amino acid composition of two types of Polygonum amphibium (aquatic and terrestrial plants) stored in the Voronezh Region. Material and methods. The investigation objects were the dried samples of two types of Polygonum amphibium, which were stored in the coastal zone of the Voronezh River in the Voronezh Region in 2017. Free amino acids (AAs) were qualitatively analyzed by thin-layer chromatography (TLC) in the butanol : acetic acid : water (4 : 1 : 2) system; the detection reagent was a 0.2% alcoholic ninhydrin solution. The amount of free AAs was quantified by spectrophotometry by the ninhydrin reaction at an analytical maximum of 568 nm. The overall composition of AAs was determined by capillary electrophoresis. Results. Individual components were identified in the investigated types of Polygonum amphibium and differences were revealed in the profile of free AAs. Capillary electrophoresis could show that all the objects contained 17 AAs, of them 7 AAs were essential. Each sample exhibited AAs that were dominant in the composition of biologically active substances in the raw materials. The amount of free AAs in the aquatic type of Polygonum amphibium was found to account for 0.66%, which was 12% less than that in its terrestrial type. Conclusion. The composition of AAs in the investigated types of Polygonum amphibium indicates that the knotweed can be an additional source of AAs. The results of the investigation may be used when assessing the identity and high-quality of the weed of Polygonum amphibium.

Full Text

Restricted Access

About the authors

Anna Sergeevna Chistyakova

Voronezh State University

Email: anna081189@yandex.ru
Assistant of Department of pharmaceutical chemistry and pharmaceutical technology VSU, PhD in Pharmaceutical Sciences.

Alevtina Alekseevna Gudkova

Voronezh State University

Email: alinevoroneg@mail.ru
Associate Professor of the Department of management and economics of pharmacy and pharmacognosy

Alla Anatol'evna Sorokina

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: sorokinaalla@mail.ru
Рrofessor of Department of pharmaceutical natural sciences Sechenov University, Doctor of Pharmaceutical Sciences, Professor.

References

  1. Марков М.В., Ключникова Н.М., Федорин А.К. Разнообразие жизненных форм и систем репродукции в роде Polygonum S.L. в аспекте вторичного перехода к водному образу жизни. Преподаватель XXI век. 2010; 1, ч. 1: 207-15.
  2. Маевский П.Ф. Флора средней полосы Европейской части России. М.: Товарищество научных изданий КМК, 2014; 635.
  3. James W. Partridge Persicaria amphibia (L.) Gray (Polygonum amphibium L.). British Ecological Society, Journal of Ecology. 2001; 89: 487-501.
  4. Sameh Hussein, Usama EL-Magly, Mohamed Tantawy, Salwa Kawashty, Nabiel Saleh. Phenolics of selected species of Persicaria and Polygonum (Polygonaceae) in Egypt. Arabian Journal of Chemistry. 2017; 10: 76-81.
  5. Hanife Ozbay, Ahmet Alim. Antimicrobial Activity of Some Water Plants from the Northeastern Anatolian Region of Turkey. Molecules. 2009; 14: 321-8.
  6. Гудкова А.А., Чистякова А.С., Сорокина А.А. и др. Изучение профиля аминокислот горца почечуйного травы (Polygonipersicariae herba). Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2018; 4: 195-200.
  7. Олешко Г.Д. Ярыгина Т.И., Зорина Е.В., Решетникова М.Д. Разработка унифицированной методики количественного определения суммы свободных аминокислот в лекарственном растительном сырье и экстракционных препаратах. Фармация. 2011; 3: 14-7.
  8. Комарова Н.В., Каменцев Я.С. Практическое руководство по использованию систем капиллярного электрофореза «Капель». Спб.: Веда, 2006; 213.
  9. Кочикян А.Т., Кочикян В.Т. Топчян А.В. Аминокислотный состав некоторых пищевых и лекарственных растений флоры Армении. Медицинская наука Армении НАН РА. 2011; 3. [Электронное издание]. Режим доступа: http:// medsci.asj-oa.am/503/1/119.pdf
  10. Биохимия сельскохозяйственных растений (под ред. В.М. Клечковского). М.: Колос, 1965; 447.
  11. Быкова Н.В., Игамбердиев А.У. Особенности фотодыхательного окисления глицина и его роль во взаимосвязи фотосинтеза и дыхания. III съезд Российского общества физиологов России. Тезисы докладов. СПб., 1993; 116.
  12. Власова О.К., Даудова Т.И. Особенности формирования аминокислотного и минерального комплексов в плодах абрикоса и яблони в условиях предгорья. Вестник Дагестанского научного центра. 2011; 43: 38-43.
  13. Плешков Б. П. Биохимия сельскохозяйственных растений. М.: Колос, 1980; 495.
  14. MP 2.3.1.2432-08. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. [Электронное издание]. Режим доступа: https://base.garant.ru/2168105/

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies