Polyprenols as an original class of natural compounds having a wide spectrum of pharmacological activity


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents a review, generalization and systematization of literature data on the main plant sources of polyprenols, the methods of their preparation and standardization, biosynthesis, metabolism, a biological role, pharmacodynamic effects, mechanisms of action, and areas of therapeutic use of polyprenols. Polyprenols are an original class of natural compounds, namely: a group of long-chain isoprenoid alcohols, in which 2,3-dihydro derivatives, dolichols, are natural bioregulators. Dolichols are formed in the liver and are directly involved in the synthesis of cell membrane glycoproteins, being oligosaccharide donors in the process of N-glycosylation of proteins, which determines one of the mechanisms of their pharmacological action: the process of cell regeneration and renewal is accelerated. When entering the human body, natural polyprenols normalize natural cell needs for endogenous dolichol phosphate, promoting the intensification of glycoprotein biosynthesis. The most obvious mechanism of action of polyprenols, dolichols in particular, is the suppression of oxidative stress: due to their chemical structure, dolichols has been found to act as fat-soluble antioxidants. In addition, polyprenols are noted to be able to increase the fluidity and permeability of biological membranes, which favors the stimulation of metabolic processes and the increase of cell viability. The properties of polyprenols predetermine their wide spectrum of pharmacological action. The main sources of polyprenols are coniferous plants (various types of fir (Picea), silver fir (Abies), and pine (Pinus)), as well as maidenhair tree (Ginkgo biloba L.). At the same time, a long-chain polyprenol mixture isolated from the leaves of maidenhair tree is dominated by polyprenols that are similar in the number of isoprene units to that of mammalian dolichols. Polyprenols have a significant, not fully evaluated therapeutic potential, which is the initiating factor in the in-depth study of their pharmacological properties.

Full Text

Restricted Access

About the authors

Anastasiya Andreevna Antipina

M.V. Lomonosov Moscow State University

Email: antipina_aa@rambler.ru
Post graduate student of the Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Fundamental Medicine 1, Leninskie Gory, Moscow 119991, Russian Federation

Vladimir Sergeevich Popov

M.V. Lomonosov Moscow State University

Email: galiantus@gmail.com
Head of the Translation medicine Laboratory, PhD. 1, Leninskie Gory, Moscow 119991, Russian Federation

Vadim Yur'evich Balabaniyan

M.V. Lomonosov Moscow State University

Email: bal.pharm@mail.ru
Leading researcher of the Translation medicine Laboratory, Doctor of Pharmaceutical Sciences. 1, Leninskie Gory, Moscow 119991, Russian Federation

References

  1. Swiezewska E., Danikiewicz W. Polyisoprenoids: Structure, biosynthesis and function. Prog. Lipid Res. 2005; 44: 235-58. doi: 10.1016/j.plipres.2005.05.002
  2. Kukina T. The Siberian flora as a source of polyisoprenoids. Materials, Methods & Technologies. 2017; 11: 63-75.
  3. Ibata K., Mizuno M., Takigawa T., Tanaka Y. Long-chain betulaprenol-type polyprenols from the leaves of Ginkgo biloba. Biochemical J. 1983; 213: 305-11. doi: 10.1042/bj2130305.
  4. Jozwiak A., Brzozowski R., Bujnowski Z. et al. Application of supercritical CO 2 for extraction of polyisoprenoid alcohols and their esters from plant tissues. J. Lipid Res. 2013: 54; 2023-8. doi: 10.1194/jlr.D038794
  5. Vanaga I., Gubernator J., Nakurte I. et al. Identification of Abies sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes. Molecules. 2020; 25: 1801. doi: 10.3390/molecules25081801
  6. Chojnacki T., Dallner G. The uptake of dietary polyprenols and their modification to active dolichols by the rat liver. J. Biol. Chem. 1983; 258 (2): 916-22.
  7. Rip J.W., Rupar C.A., Ravi K., Carroll K.K. Distribution, metabolism and function of dolichol and polyprenols. Prog. Lipid. Res. 1985; 24 (4): 269-309. doi: 10.1016/0163-7827(85)90008-6
  8. Yang L., Wang C.Z., Ye J.Z., Li H.T. Hepatoprotective effects of polyprenols from Ginkgo biloba L. leaves on CCl4-induced hepatotoxicity in rats. Fitoterapia. 2011; 82 (6): 834-40. doi: 10.1016/j.fitote.2011.04.009
  9. Cavallini G., Sgarbossa A., Parentini I., et al. Dolichol: A Component of the Cellular Antioxidant Machinery. Lipids. 2016; (4): 477-86. doi: 10.1007/s11745-016-4137-x
  10. Ciepichal E., Jemiola-Rzeminska M., Hertel J. et al. Configuration of polyisoprenoids affects the permeability and thermotropic properties of phospholipid/polyisoprenoid model membranes. Chem. Phys. Lipids. 2011; 164 (4): 300-6. doi: 10.1016/j.chemphyslip.2011.03.004
  11. Лаптева Е.Н., Рощин В.И., Султанов В.С. Специфическая активность полипренольного препарата «Ропрен» (Bioeffective® R) при токсическом поражении печени в эксперименте. Клиническое питание. 2007; 3: 28-32.
  12. Султанов В.С., Лаптева Е.Н., Рощин В.И. и др. Клиническое исследование гепатопротектора «Ропрен» при заболеваниях гепатобилиарной системы. Гастроэнтерология Санкт-Петербурга. 2010; 4: 7-11.
  13. Цой Е.И., Вышлов Е.В., Трусов В.Б. Применение полипренолсодержащего препарата у пациентов с острым коронарным синдромом. Сибирский медицинский журнал. 2018; 33 (2): 21-5. doi: 10.29001/2073-8552-2018-33-2-21-25
  14. Можокина Г.Н., Елистратова Н.А., Михайлова Л.П. и др. Экспериментальное обоснование применения Ропрена для профилактики поражений печени, вызванных изониазидом. Туберкулез и болезни легких. 2014; 7: 47-53. doi: 10.21292/2075-1230-2014-0-7-42-47
  15. Soultanov V., Fedotova J., Nikitina T. et al. Antidepressant-Like Effect of Ropren® in p-Amyloid-(25-35) Rat Model of Alzheimer's Disease with Altered Levels of Androgens. Mol. Neurobiol. 2017; 54 (4): 2611-21. doi: 10.1007/s12035-016-9848-8
  16. Fedotova J., Soultanov V., Nikitina T. et al. Cognitive-enhancing activities of the polyprenol preparation Ropren® in gonadectomized β-amyloid (25-35) rat model of Alzheimer's disease. Physiol. Behav. 2016; 157: 55-62. doi: 10.1016/j.physbeh.2016.01.035
  17. Wang C., He L., Yan M. et al. Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in a d-galactose-induced mouse model. Age (Dordr). 2014; 36 (4): 9676. doi: 10.1007/s11357-014-9676-6
  18. Шустов Е.Б., Кашуро В.А., Батоцыренова Е.Г. и др. Полипренолы как перспективные нейрофармакологические средства. Биомедицина. 2020; 16 (3): 125-9. doi: 10.33647/2074-5982-16-3-125-129
  19. Шабанов П.Д., Султанов В.С., Лебедев А.А. и др. Защитные эффекты полипренолов на модели подострого гепатоза с энцефалопатией у крыс. Медицинский академический журнал. 2010; 10 (2): 50-7.
  20. Монахова И.А., Рощин В.И., Агишев В.Г., Султанов В.С. Клиническое исследование эффективности и безопасности препарата «Ропрен» в лечении алкогольных психозов. Ученые записки СПбГМУ им. акад. И.П. Павлова. 2012; 19 (1): 87-90.
  21. Khodanovich M.Y., Pishchelko A.O., Glazacheva V.Y. et al. Plant polyprenols reduce demyelination and recover impaired oligodendrogenesis and neurogenesis in the cuprizone murine model of multiple sclerosis. Phytother. Res. 2019; 33 (5): 136373. doi: 10.1002/ptr.6327
  22. Санин А.В., Ганшина И.В., Судьина Г.Ф. и др. Фосфорилированные полипренолы - новый класс соединений с противовоспалительной и бронхолитической активностью. Инфекция и иммунитет. 2011; 4: 355-60. doi: 10.15789/2220-7619-2011-4-355-360
  23. Tao R., Wang C., Ye J. et al. Polyprenols of Ginkgo biloba Enhance Antibacterial Activity of Five Classes of Antibiotics. Biomed. Res. Int. 2016; 2016: 4191938. doi: 10.1155/2016/4191938
  24. Tao R., Wang C., Zhang C. et al. Characterization, Cytotoxicity and Genotoxicity of Graphene Oxide and Folate Coupled Chitosan Nanocomposites Loading Polyprenol and Fullerene Based Nanoemulsion Against MHCC97H Cells. J. Biomed. Nanotechnol. 2019; 15 (3): 555-70. doi: 10.1166/jbn.2019.2698
  25. Wang C., Li W., Tao R. et al. Antiviral activity of a nanoemulsion of polyprenols from ginkgo leaves against influenza A H3N2 and hepatitis B virus in vitro. Molecules. 2015; 20 (3): 5137-51. doi: 10.3390/molecules20035137
  26. Tao R., Wang C., Ye J. et al. Antibacterial, cytotoxic and genotoxic activity of nitrogenated and haloid derivatives of C50-C60 and C70-C120 polyprenol homologs. Lipids Health Dis. 2016; 15: 175. doi: 10.1186/s12944-016-0345-x
  27. Пронин А.В., Ожерелков С.В., Деева А.В. и др. Полипренилфосфаты как адъюванты, поляризующие иммунный ответ в сторону Th1. Инфекция и иммунитет. 2012; 3: 645-50. doi: 10.15789/2220-7619-2012-3-645-650
  28. Stachyra A., Rak M., Redkiewicz P. et al. Effective usage of cationic derivatives of polyprenols as carriers of DNA vaccines against influenza virus. Virol. J. 2017; 14: 168. doi: 10.1186/s12985-017-0838-x
  29. Sari D., Basyuni M., Hasibuan P. et al. Cytotoxic and Antiproliferative Activity of Polyisoprenoids in Seventeen Mangroves Species Against WiDr Colon Cancer Cells. Asian Pac. J. Cancer Prev. 2018; 19 (12): 3393-400. doi: 10.31557/apjcp.2018.19.12.3393
  30. Latkovskis G., Sapiro V., Sokolova E. et al. Pilot study of safety and efficacy of polyprenols in combination with coenzyme Q10 in patients with statin-induced myopathy. Medicina. 2016; (3): 171-9. doi: 10.1016/j.medici.2016.05.002

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies