The effect of various diets on the human gut microbiota composition


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Intestinal microorganisms make up a dynamic ecosystem that has a significant impact on human health, by modulating the risk of certain chronic diseases, including inflammatory bowel diseases, obesity, type 2 diabetes mellitus, cardiovascular diseases, and cancer. The gut microbiota is characterized by an interindividual variability due to genetic and environmental factors; its composition is unique in each individual and tends to remain fairly stable throughout the life. Individual nutrition features play a key role in the modulation of the gut microbiota composition. There are significant differences in the composition of the gut microbiota between the individuals who consume mainly the socalled Western diet high in fat and those who prefer a carbohydrate diet rich in dietary fibers. There are data on the relationship between nutrition and the gut microbiota, on the impact of short-term and long-term changes in the diet on the composition of the gut microbiota, as well as on certain types of diets. The metabolic effects of diet-induced changes in the composition of the gut microbiota are analyzed. It has been shown that a high fiber diet has a beneficial effect on the composition of the gut microbiota, stimulating bacterial diversity and contributing to positive changes in body functions. On the contrary, a diet high in fat and refined carbohydrates causes dysbiosis and stimulates the increase of inflammatory microflora, leading to chronic endotoxemia and systemic inflammation.

Full Text

Restricted Access

About the authors

K. A Aitbaev

Kyrgyz Research Institute of Molecular Biology and Medicine

Email: kaitbaev@yahoo.com
3, T. Moldo St., Bishkek 720040, Kyrgyzstan

I. T Murkamilov

I.K. Akhunbaev Kyrgyz State Medical Academy; Kyrgyz-Russian Slavic University

Email: murkamilov.i@mail.ru
92, Akhunbaev St., Bishkek 720020, Kyrgyzstan; 44, Kievskaya St., Bishkek 720000, Kyrgyzstan

V. V Fomin

Kyrgyz Research Institute of Molecular Biology and Medicine

Email: fomin@mma.ru
2, B. Pirogovskaya St., Build. 4, Moscow 119991, Russian Federation

Zh. A Murkamilova

Kyrgyz-Russian Slavic University

Email: murkamilovazh.t@mail.ru
44, Kievskaya St., Bishkek 720000, Kyrgyzstan

I. O Kudaibergenova

I.K. Akhunbaev Kyrgyz State Medical Academy

Email: k_i_o2403@mail.ru
92, Akhunbaev St., Bishkek 720020, Kyrgyzstan

F. A Yusupov

Osh State University

Email: furcat_y@mail.ru
331, Lenin St., Osh 714000, Kyrgyzstan

References

  1. Kushkevychl., Martinkova K., Vitezova M. Et al. Intestinal Microbiota and Perspectives of the Use of Meta-Analysis for Comparison of Ulcerative Colitis Studies. J. of Clinical Medicine. 2021; 10 (3): 462. doi: 10.3390/jcm10030462
  2. Acharya C., Bajaj J.S. Chronic liver diseases and the microbiome - translating our knowledge of gut microbiota to management of chronic liver disease. Gastroenterology. 2021; 160 (2): 556-72. doi: 10.1053/j.gastro.2020.10.056
  3. Zhao Y., Jiang Q. Roles of the Polyphenol-Gut Microbiota Interaction in Alleviating Colitis and Preventing Colitis-Associated Colorectal Cancer. Advances in Nutrition. 2021; 12 (2): 546-65. doi: 10.1093/advances/nmaa104
  4. Guo Y., Luo S., Ye Y. et al. Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients. The J. of Clinical Endocrinology & Metabolism. 2021; 106 (1): 64-79. doi: 10.1210/clinem/dgaa644
  5. Bibbo S., Dore M.P., Pes G.M. et al. Is There a Role for Gut Microbiota in Type 1 Diabetes Pathogenesis? Ann Med. 2017; 49 (1): 11-22. D0I:10.1080/07853890.2016.1222449
  6. Prince B.T., Mandel M.J., Nadeau K. et al. Gut Microbiome and the Development of Food Allergy and Allergic Disease. Pediatr. Clin. North. Am. 2015; 62: 1479-92. DOI:10.1016/j. pcl.2015.07.007
  7. Delgado M.A., Fochesato A., Juncos L.I. et al. Gut Microbiota Biomarkers in Autism Spectrum Disorders. Psychiatry and Neuroscience Update. Springer. Cham. 2021; 613-22. doi: 10.1007/978-3-030-61721-9_43
  8. Wu G.D., Chen J., Hoffmann C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334: 105-8. doi: 10.1126/science.1208344
  9. David L.A., Maurice C.F., Carmody R.N. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505: 559-63. doi: 10.1038/nature12820
  10. Claesson M.J., Jeffery I.B., Conde S. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012; 488: 178-84. doi: 10.1038/nature11319
  11. Chan Y.K., Estaki M., Gibson D.L. Clinical consequences of diet-induced dysbiosis. Ann. Nutr. Metab. 2013; 63: 28-40. doi: 10.1159/000354902
  12. Adler C.J., Dobney K., Weyrich L.S. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 2013; 45: 450-5. doi: 10.1038/ng.2536
  13. De Filippo C., Cavalieri D., Di Paola M. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010; 107: 14691-6. DOI: org/10.1073/pnas.1005963107
  14. Grzeskowiak L., Collado M.C., Mangani C. et al. Distinct gut microbiota in southeastern African and northern European infants. Pediatr. Gastroenterol. Nutr. 2012; 54 (6): 812-6. doi: 10.1097/MPG.0b013e318249039c
  15. Yatsunenko T., Rey F.E., Manary M.J. et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486: 222-7. doi: 10.1038/nature11053
  16. Liszt K., Zwielehner J., Handschur M. et al. Characterization of bacteria, clostridia and Bacteroides in faeces of vegetarians using qPCR and PCR-DGGE fingerprinting. Ann. Nutr. Metab. 2009; 54: 253-7. doi: 10.1159/000229505
  17. Dewulf E.M., Cani P.D., Claus S.P. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013; 62: 1112-21. doi: 10.1136/gutjnl-2012-303304
  18. Walton G.E., Lu C., Trogh I. et al. A randomised, doubleblind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccha-rides enriched bread in healthy volunteers. Nutr. J. 2012; 11: 36. doi: 10.1186/1475-2891-11-36
  19. Kankaanpaa P., Yang B., Kallio H. et al. Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli. Appl. Environ. Microbiol. 2004; 70: 129-36. DOI: 10.1128/ AEM.70.1.129-136.2004
  20. Lopetusol R., Scaldaferri F., Bruno G. et al. The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors. Eur. Rev. Med. Pharmacol. Sci. 2015; 19 (6): 1068-76. PMID: 25855934
  21. Huang E.Y., Devkota S., Moscoso D. et al. The role of diet in triggering human inflammatory disorders in the modern age. Microbes Infect. 2013; 15: 765-74. DOI: 10.1016/j. micinf.2013.07.004
  22. Пупыкина К.А., Басченко Н.Ж., Павлова Г.А. и др. Влияние растительного сбора на дисбактериоз кишечника. Фармация. 2007; 6: 37-9. @@Pupykina K.A.,Baschenko N.Zh., Pavlova G.A. et al. Effects of herbal species on intestinal dysbacteriosis. Farmatsiya. 2007; 6: 37-9 (in Russian).
  23. Айтбаев К.А., Муркамилов И.Т. Кишечная микробиота: роль в патогенезе артериальной гипертензии. Клиническая медицина. 2017; 2: 123-6. doi: 10.18821/0023-2149-2017-95-2-123-126 @@Aitbaev K.A., Murkamilov I.T. Intestinal microbiota: its role in pathogenesis of arterial hypertension. Klinicheskaya meditsina. 2017; 2: 123-6. doi: 10.18821/0023-2149-2017-95-2-123-126 (in Russian).
  24. Lee C.Y. The Effect of High-Fat Diet-Induced Pathophysiological Changes in the Gut on Obesity: What Should be the Ideal Treatment? Clin. Transl. Gastroenterol. 2013; 4: e39. doi: 10.1038/ctg.2013.11
  25. Kim K.A., Gu W., Lee I.A. et al. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One. 2012; 7: e47713. DOI:10.1371/ journal.pone.0047713
  26. Pendyala S., Walker J.M., Holt P.R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012; 142: 1100-1. doi: 10.1053/j.gas-tro.2012.01.034
  27. Duca F.A., Sakar Y., Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J. Nutr. Biochem. 2013; 24: 1663-77. doi: 10.1016/j.jnutbio.2013.05.005
  28. Cani P.D., Amar J., Iglesias M.A. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56: 1761-72. doi: 10.2337/db06-1491
  29. Brun P., Castagliuolo I., Di Leo V. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007; 292: 518-25. doi: 10.1152/ajpgi.00024.2006

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies