Nanodiamond as an agent for delivery of cytostatics


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. To deliver a drug directly to the biological target is one of the main problems with chemotherapy. Innovative nanocarrier-based drugs can solve this problem. Carbon nanostructures are one of the main contenders for the role of ideal carriers for drug delivery systems. Nanodiamond has the least toxic effect among the carbon nanostructures. Objective: to immobilize biologically active polycarbonitriles on the surface of a detonation nanodiamond (DND) to obtain candidates in the substance with antiproliferative activity. Material and methods. The objects of the investigation were synthesized organic cyano compounds. The latter were placed on the surface of DNDs, by using the mechanochemical technique. Cytotoxicity was verified by a proliferative MTT assay. Results. The adsorption of carbonitrile compounds of Class 6 on the surface of DND was carried out and the antiproliferative activity of the three obtained candidates for pharmaceutical substances was investigated. Conclusion. The authors have developed a method that can obtain nanodiamond-based nitrile-containing substances that can be used in the design of medicines.

全文:

受限制的访问

作者简介

V. Andreeva

I.N. Ulyanov Chuvash State University

Email: ver.92.92@mail.ru
15, Moskovsky Prosp., Cheboksary 428015, Russian Federation

M. Maryasov

I.N. Ulyanov Chuvash State University

Email: marsikprovisor@mail.ru
15, Moskovsky Prosp., Cheboksary 428015, Russian Federation

N. Romashov

I.N. Ulyanov Chuvash State University

Email: romashov.nikita.98@mail.ru
15, Moskovsky Prosp., Cheboksary 428015, Russian Federation

O. Nasakin

I.N. Ulyanov Chuvash State University

Email: ecopan21@inbox.ru
15, Moskovsky Prosp., Cheboksary 428015, Russian Federation

参考

  1. Демина Н.Б. Скатков С.А. Стратегии развития и биофармацевтические аспекты систем доставки лекарств. Российский химический журнал. 2012; 56 (3-4): 5-10.
  2. Наноструктуры в биомедицине. (под ред. К. Гонсалвес). М.: Бином. Лаборатория знаний, 2012; 519.
  3. Zhang X., Hu W., Li J. et al. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res. 2012; 1 (1): 62-8.
  4. Schrand A.M. et al. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond Relat. Mater. 2007; 16 (12): 2118-23.
  5. Яковлев Р.Ю. Мингалев П.Г. Леонидов Н.Б. и др. Детонационный наноалмаз как перспективный носитель лекарственных веществ. Химико-фармацевтический журнал. 2020; 54 (4): 29-44. doi: 10.30906/0023-1134-2020-54-4-29-44
  6. Марьясов М.А. Давыдова В.В. Насакин О.Е. и др. Антипролиферативная активность продуктов циклизации 1-(2-оксоциклогексил)этан-1,1,2,2-тетракарбонитрила с -непредельными альдегидами. Химико-фармацевтический журнал. 2021; 55 (1): 29-32. doi: 10.30906/0023-1134-2021-55-1-29-32
  7. Марьясов М.А. Давыдова В.В. Насакин О.Е. и др. Антипролиферативная активность цианозамещенных пиранов и 1,2,5,6,7,8-гексагидрохинолин-3,3,4,4-тетракарбонитрилов. Химико-фармацевтический журнал. 2016; 50 (12): 26-7.
  8. Марьясов М.А., Давыдова В.В., Насакин О.Е. и др. Синтез и антипролиферативная активность 3-(-гидразоно)метил) циклобутан-1,1,2,2-тетра-карбонитрилов и 3-((2-гидразоно)метил) -6-метилциклогекс-4-ен-1,1,2,2-тетракарбонитрилов. Химико-фармацевтический журнал. 2020; 54 (3): 11-5. doi: 10.30906/0023-1134-2020-54-3-11-15
  9. NCI 60 Cell Line Screen. Encyclopedia of Cancer. 2011; 2468. doi: 10.1007/978-3-642-16483-5_3987
  10. Basso L., Cazzanelli M., Orlandi M., Miotello A. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. Applied Sciences. 2020; 10 (12): 4094. DOI: 10.3390/ app10124094
  11. Yakovlev R. Yu., Osipova A. S., Solomatin A. S., Kulakova I. I., Murav'eva G. P., Avramenko N. V., Leonidov N. B., Lisichkin G. V. An approach to unification of the physicochemical properties of commercial detonation nanodiamonds. Russian J. of General Chemistry. 2015; 85 (6): 1565-74. DOI: 10.1134/ s1070363215060365
  12. Prabst K., Engelhardt H., Ringgeler S., Hubner H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. Methods in Molecular Biology. 2017; 1-17. doi: 10.1007/978-1-4939-6960-9_1
  13. Государственная Фармакопея Российской Федерации. XIV изд. ОФС.1.1.0014.15 Статистическая обработка результатов определения специфической фармакологической активности лекарственных средств биологическими методами. [Электронное издание]. Режим доступа:http://femb.ru/feml

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2021
##common.cookie##